

8. Molybdenum 1994

Michael J. Morris

CONTENTS

INT	RODUCTION	***************************************	310
8.1	MOLYBDEN	UM(VI)	310
	8.1.1	Complexes with halide ligands	310
	8.1.2	Complexes with nitrogen donor ligands	311
	8.1.3	Complexes with oxygen donor ligands	312
	8.1.4	Complexes with sulfur donor ligands	318
8.2	MOLYBDENUM(V)		
	8.2.1	Complexes with halide ligands	319
	8.2.2	Complexes with nitrogen donor ligands	320
	8.2.3	Complexes with oxygen and sulfur donor ligands	321
8.3	MOLYBDENUM(IV)		
	8.3.1	Complexes with halide and cyanide ligands	323
	8.3.2	Complexes with nitrogen and phosphorus donor ligands	323
	8.3.3	Complexes with oxygen and sulfur donor ligands	323 325 325 325 326
8.4	MOLYBDENUM(III)		
	8.4.1	Complexes with halide and phosphine ligands	
	8.4.2	Complexes with oxy zen and nitrogen donor ligands	
8.5	MOLYBDENUM(II)		
0.0	8.5.1	Complexes with halide and phosphine or carbonyl ligands	
	8.5.2	Complexes with nitrogen donor ligands	
	8.5.3	Complexes with oxygen donor ligands	325 326 326 326 327 329 330 330
	8.5.4	Complexes with sulfur donor ligands	
8.6		UM(I)	
8.7		UM(0)	331
	8.7.1	Complexes with carbonyl ligands	331
	8.7.2	Complexes with nitrogen and phosphorus donor ligands	337
8.8		UM CLUSTERS	338
0.0	8.8.1	Polyoxomolybdates	338
	8.8.2	Halide clusters	342
	8.8.2	Other clusters, including cubanes	342
REE	ERENCES	Aurar armiarn'i mandamb anamina miniminani	345

INTRODUCTION

This review surveys the coordination chemistry of molybdenum reported in 1994, and follows the same format as the ones which covered 1992 and 1993 [1, 2]. The references have been located by a search of volumes 120, 121 and 122 of *Chemical Abstracts*, together with use of the Current Contents and BIDS databases; in addition all the major inorganic chemistry journals have been examined individually. Where appropriate, late references from 1993 have also been included. The review is restricted to coordination complexes, including carbonyls but excluding organometallic compounds and solid-state chemistry. Synthetic models of Mo centres and clusters in biological systems are covered, but biochemical studies of the enzymes themselves are not.

A number of relevant review articles have appeared, including two on the role of metals in nitrogenase [3, 4], one on the bioinorganic chemistry of pterin-containing Mo and W enzymes [5], and a collection of proceedings dealing with molybdenum enzymes and their model systems [6]. A thematic issue of Chemical Reviews on metal-dioxygen complexes included an article covering peroxo and superoxo complexes of Cr, Mo and W [7], and an issue of J. Cluster Sci. was given over to metal-metal multiple bonds with an introduction by Cotton [8]. Reviews on organoimido complexes [9] and octacyano and oxo- or nitrido-tetracyano complexes [10] also contain large sections on molybdenum chemistry, while relevant material can also be found in articles about complexes of sterically hindered thiolate ligands [11], of diazoalkanes [12], of heavier polychalcogenide ligands [13], and of amidines [14]. A review of the EPR spectroscopic properties of low spin d⁵ systems also contains a small section on Mo(I) complexes [15]. Shorter accounts have appeared dealing with electron transfer reactions of species such as [Mo6Cl14]2-[16], the reactions of SO₂ in metal complexes [17], the relevance of allyloxo and allyimido complexes to the industrial SOHIO process [18], and metal-catalysed epoxidation chemistry [19]. Two thoughtprovoking articles by Gibson discuss the way in which the orientation of π -donor ligands in tetrahedral complexes is determined by competition for the available metal orbitals [20, 21]. Books dealing with the chemistry and uses of molybdenum [22] and the solubility of its compounds [23] have been published. The first in the current series of reviews on the coordination chemistry of Mo, covering 1991, has appeared [24], as has the corresponding review of the organometallic chemistry of Cr, Mo and W during 1992 [25].

8.1 MOLYBDENUM(VI)

8.1.1 Complexes with halide ligands

The caesium salt of the [MoF₇]⁻ ion was made by the reaction of CsF with MoF₆. The X-ray structures of this and the corresponding NO₂⁺ and NMe₄⁺ salts all show a capped octahedral structure. In solution the compound is fluxional and a single sharp ¹⁹F NMR peak is observed in MeCN [26]. A thermodynamic study of the possibility of employing MoF₆ or MoCl₅ as precursors for the chemical vapour deposition of MoS₂ has appeared [27]. Ab initio calculations on

various metal oxo- or nitrido-halides, including MoOX₄, MoNX₃, [MoNX₄]⁻ and [MoNX₄]²- where X = Cl or F have concluded that the M-O and M-N bonds are strongly covalent whereas the metal halide bonds are largely ionic in character [28].

8.1.2 Complexes with nitrogen donor ligands

Alkylation of the nitrido species $[Mo(N)(O^tBu)_3]$ with NpMgBr (Np = CH₂CMe₃) affords $[Mo(N)Np_3]$, which adds HX (X = halide) to form trigonal bipyramidal $[Mo(NH)(X)Np_3]$ in which the three alkyl groups are equatorial. A similar compound, $[\{Mo(NH)Np_3\}_2(\mu-O)]$, is formed by addition of water [29]. Electrochemical studies of $[MCl_3(NPPh_2NPPh_2N)]$, in which the metal (Mo or W) forms part of a phosphorus-nitrogen ring, confirm that this ligand is capable of stabilising high oxidation states [30].

Gibson and coworkers have explored two routes to unsymmetrical bis-imido species [Mo(NR¹)(NR²)Cl₂(dme)]. The first approach involves using a mixture of two amines in the preparation from Na₂MoO₄, Me₃SiCl and NEt₃ in dme; alternatively, for R¹ = ^tBu, imido exchange in [Mo(N¹Bu)₂Cl₂(dme)] can be effected by R²NH₂ [31]. The resulting complexes can then be used to prepare new metathesis catalysts [32]. The reaction of [Mo(NtBu)2Cl2] with KHBpz*3 affords [(HBpz*3)Mo(NtBu)2Cl]; one of the imido groups can be protonated with HBF₄ [33]. Displacement of the chloride ligands in [Mo(N^tBu)₂Cl₂] with two equivalents of carbonylmetallate anions such as $[Co(CO)_4]^-$, $[Mn(CO)_5]^-$, $[CpM(CO)_3]^-$ (M = Mo, W) or $[CpFe(CO)_2]^-$ gave average to excellent yields of the trinuclear species $[Mo(N^tBu)_2(ML_n)_2]$ containing direct bonds between high valent and low valent metals [34]. Reduction of $[Mo(NR)_2Cl_2(dme)]$ or $[Mo(NR)_2(PMe_3)_2Cl_2]$ (R = Mes) with potassium-graphite in the presence of more PMe₃ affords [Mo(NR)₂(PMe₃)₃]; one of the phosphine ligands is readily replaced by P(OEt)3, ethylene or alkynes to give [Mo(NR)2(PMe3)2L] (1) in which the phosphines occupy the axial positions of a trigonal bipyramid. In the cases where L = an alkene or alkyne, the C₂ unit is oriented perpendicular to the equatorial plane [35]. Interaction of [Mo(N^tBu)₂Cl₂(dme)] with py gave [Mo(NtBu)2Cl2(py)2], while with excess tBuNH2, the dimer $[Mo(N^tBu)(NH_2^tBu)Cl(\mu-Cl)]_2$ was isolated; the same group has also explored these compounds as precursors to molybdenum carbonitride films by CVD at 650°C [36, 37]. As part of a wider study of [Cp'Mo(N¹Bu)Cl2], its reaction with Cl2 was found to give a 35% yield of [MoCl3(µ-N^tBu)(μ-Cl)₂ which was structurally characterised [38].

The homoleptic imido dianion Li₂[Mo(N^tBu)₄] reacts with PCl₃ to give the unusual species (2) in which three of the imido groups are joined by a P₂ unit [39]. Insertion of PhNCO occurs at the Mo-O bonds of [Mo(NR)₂(O^tBu)₂] (R = 2,6-C₆H₃iPr₂) to give the bis(carbamate) complex [Mo(NR)₂[NPhC(O^tBu)O₂] (3), whereas PhNCS adds reversibly at the imido groups to give the pyramid₄l thioureate species [Mo(NR){NRC(=S)NPh}(O^tBu)₂] (4) [40]. Treatment of [Mo(N^tBu)₂(OSiMe₃)₂] with catechol (H₂cat) in the presence of py affords [Mo(N^tBu)(Cat)(OSiMe₃)₂(py)] (5), whereas 8-hydroxyquinoline (HL) gave [Mo(N^tBu)(O)L₂]. The related [Mo(N^tBu)₂(Mes)₂] also reacted with HL to afford [Mo(N^tBu)₂(Mes)L] and a similar compound was produced with 8-hydroxyquinaldine [41].

The *trans* influence of the imido group in $[Mo(NH)Cl_3(PR_3)_2]^{0, \pm 1}$ (R = H, Me, F) has been studied by approximate density functional theory calculations. As the occupation of the Mo dorbitals increases on going from d^0 to d^2 , the extent of lengthening of the Mo–Cl bond *trans* to the imido group lessens, and the degree of bending of the *cis* ligands away from the imido group also decreases. This is due to backbonding from Mo to the phosphine σ^* orbitals, which is maximised by decreasing distortion [42].

8.1.3 Complexes with oxygen donor ligands

The X-ray structure of [NBu4]2[MoO4] has been determined [43]. A multinuclear NMR spectroscopic study of the interaction of aqueous molybdate with D-xylo-5-hexulosonic acid has shown that all three forms of the acid (α , β and keto form) can bind to form 1:1 complexes [44]. Four types of complex were detected in a similar study with D-galactaric acid and D-mannaric acid: a 4:2 complex and a 2:1 species, both involving Mo2O5²⁺ units, and 2:2 and 1:1 complexes involving MoO2²⁺ centres [45]. The binding properties of molybdate with glucuronic acid have been studied by polarography; complexes of the Mo2O5²⁺ moiety were again proposed [46]. The interaction of molybdate with nitrilotriacetate (H3nta) has been studied by potentiometric, spectrophotometric and enthalpimetric titrations and analysed with the Superquad program. Species involved include [MoO3(nta)]³⁻, [MoO3(Hnta)]²⁻ and [Mo2O5(Hnta)2]²⁻, with [Mo2O5(nta)(OH)]²⁻ and [Mo2O5(nta)(H2O)]⁻ also identified [47]. Adducts of BiCl3, MnCl2 and

CoCl₂ with molybdate have been isolated [48]. New reagents for the extraction and determination of Mo(VI) have been developed based on hydrazones [49], naphthoic acids [50], and chromenones [51, 52], and sodium dithionite has been used to reduce Mo(VI) to Mo(V) for colorimetric analysis [53].

Further details on the reaction of [MoO₂Cl₂], BuLi and O(Si^tBu₂OH)₂, which gives the 12-membered ring species [MoO₂(OSi^tBu₂OSi^tBu₂O)]₂, have appeared; unfortunately the X-ray structure of the product could not be obtained [54]. The interaction of [MoOCl₅]²⁻ with *cis*-[Cr(cyclam)(OH)(H₂O)][ClO₄]₂ and NaOH afforded [MoO₄Cr(cyclam)]₂[ClO₄]₂, which contains an 8-membered ring: two MoO₄ units bridge the Cr(III) centres [55].

Numerous publications have appeared on the synthesis and application of molybdenum peroxo complexes. A study of the kinetics of the oxidative bleaching of phenolphthalein by H_2O_2 catalysed by transition metal ions found that Mo(VI) was the most active; the active species is thought to be $[Mo(O_2)_4]^{2-}$. At higher concentrations of Mo, a second mechanism, involving the production of singlet oxygen, becomes predominant [56]. The oxidation of bromide by H_2O_2 is catalysed by Mo(VI) complexes such as $[MoO(O_2)_2(H_2O)_2]$ and the system acts as a model for the vanadium bromoperoxidase enzyme [57]. Oxidation of bromide by H_2O_2 and $[MoO(O_2)_2(ox)]^{2-}$ has also been examined; it is thought to involve production of $[MoO_2(O_2)(ox)]^{2-}$ initially, though the final product is $[MoO_3(ox)]^{2-}$ [58]. This product was also obtained on treating either of the two oxalate anions with NO; NO₂ was produced too [59]. The oxidation of the Fe(II) complex $[Fe(CN)_5(mpyz)]^{2-}$ (mpyz = N-methylpyrazinium) by H_2O_2 is however not catalysed by Mo(VI); the absence of catalysis is thought to rule out oxygen atom transfer and inner sphere electron transfer mechanisms [60].

Several papers deal with the immobilisation of Mo complexes on polymer supports, usually by treatment with [MoO₂(acac)₂]. A polybenzimidazole Mo(VI) complex prepared in this way was found to be a highly active and long-lived catalyst for the epoxidation of propene with ¹BuOOH, giving propylene oxide with excellent selectivity. Moreover, the activity of recycled catalyst actually increased [61]. The imidazole catalysts retained the Mo loading better than similar ones derived from 2-aminomethyl pyridine [62].

A theoretical study of alkene epoxidation by neutral six- and seven-coordinate Mo(VI) peroxo complexes found that the six-coordinate species display similarities to peracids whereas the seven-coordinate ones are more similar to hydroperoxides; these latter display lower reactivity due to the extra donation to the metal centre by the additional ligand [63]. A number of complexes of the type $[MoO(O_2)_2(L)(L')]$ have been prepared and characterised. The oxidation of pyridine by H_2O_2 in the presence of $[MoO_4]^{2-}$ gave the pyridine-N-oxide complex $[MoO(O_2)_2(pyO)_2]$, which itself is a catalyst for H_2O_2 oxidations. The X-ray structure of the W analogue showed the familiar pentagonal bipyramidal coordination with the peroxo ligands in the equatorial plane [64]. A similar species, $[MoO(O_2)_2(HIm)(H_2O)]$ (HIm = imidazole), was made by treating $[H_2Im]_4[Mo_8O_{26}(HIm)_2]$ with H_2O_2 [65]. The complex $[MoO(O_2)_2(hmpa)(H_2O)]$ was treated with various substituted pyridines; in most cases the hmpa ligand was replaced except for 3,5-dibromopyridine which displaced the water molecule. Compounds of the type

 $[Mo_2O_3(O_2)_4L_2(H_2O)_2]$ were also made [66]. The dipole moments of some Mo(VI) peroxo complexes were measured by the same group [67]. In an attempt to increase the solubility of such complexes in organic solvents, 2-(3-pyrazolyl)-pyridines bearing long alkyl chains were also employed as didentate ligands in $[MoO(O_2)_2(L)]$ [68]. Similar compounds with bpy, 2,2'-pyridylbenzimidazole and 8-aminoquinoline were made, but with 8-hydroxyquinoline (HL), the mono-peroxo species $[MoO(O_2)L_2]$ was isolated [69].

The formation constants of [MoO(O₂)(dipic)] (H₂dipic = pyridine-2,6-dicarboxylic acid) and [MoO(O₂)(nta)]⁻ have been determined by potentiometry and the X-ray structure of the nta complex was determined [70]. The complexes [MoO(O₂)(L)(L')₂], where H₂L is diphenic acid and L' = various pyridines have also been prepared and used to oxidise PPh₃ to its oxide [71]. The oxidation of alcohols to aldehydes and ketones catalysed by anionic Mo(VI) peroxo complexes such as [MoO(O₂)₂(pic)]⁻, [Mo(O)(O₂)₂(pic-O)]⁻ and [MoO(O₂)₂(O₂CR)]⁻ (R = various aryls) has been explored. A common mechanism involving an alkono intermediate is proposed for all these catalysts even though they show widely differing activation parameters [72]. The mechanistic pathway of the reaction of 3-phenyl-2-methylbenzofuran epoxide with dimethyl dioxirane in the presence of [MoO(O₂)₂(hmpa)] has been elucidated and appears to involve a 1,2-dioxetane intermediate [73]. Molybdenum peroxo complexes have also been investigated as sources of singlet oxygen and as calibrants in thermal analysis [74, 75]. A detailed study of allylic amination promoted by [MoO₂(dtc)₂] or [MoO₂(dipic)(hmpa)] concluded that four stages were involved in the reaction, namely:

- i) reaction of [MoO₂(L)(L')] with RNHOH to give the side bound nitrosoarene complexes [MoO(η^2 -RNO)(L)(L')];
 - ii) dissociation of RNO, leaving the Mo(IV) species [MoO(L)(L')];
 - iii) reaction of RNO with the alkene to give an N-allyl hydroxylamine, and
- iv) reduction of this to an allylamine with concomitant oxidation of the Mo(IV) centre back to $[MoO_2(L)(L')]$ [76].

Columnar liquid crystals based on the [MoO₂(dipic)] motif have been prepared using a derivative of the dipic ligand which has a OCH₂C₆H₂-3,4,5-(OR)₃ substituent, where R = a long alkyl chain. The degree of association between molecules can be monitored by variable temperature IR spectra of the MoO₂ unit [77].

The salt $[PPh_4]_2[MoO_2(NCS)_4]$ has been prepared from Na_2MoO_4 and KSCN followed by cation exchange. It transfers an oxygen atom to PPh_3 over 20 times more efficiently than the well known $[MoO_2(dtc)_2]$ complexes [78]. The X-ray structure of a second form of another thiocyanate complex, $[Mo_2O_2(NCS)_6(\mu-O)(\mu-SO_4)]$ has been determined [79]. Fluorination of molybdate with pyridinium poly(hydrogen fluoride) gave $[pyH]_2[MoO_2F_4]$ [80].

The X-ray structure of [NEt4] [MoO₂(cat)₂] has been determined [81]. An unusual example of this type of complex, K₂[MoO₂(H₂-bicapped-TRENCAM)], has been isolated and structurally characterised; the ligand is N{CH₂CH₂NHCOC₆H₂(OH)₂CONHCH₂CH₂}₃N (6) which is coordinated as a bis-catecholate [82]. The thiobenzilate complex [MoO₂(O₂CCPh₂S)₂]²-undergoes a proton-assisted electrochemical reduction to two Mo(IV) species,

[MoO(O₂CCPh₂S)₂]²⁻ and [MoO(O₂CCPh₂S)(solv)₂]. These in turn can be reoxidised to Mo(V) species [83]. The same Mo(VI) thiobenzilate complex can be intercalated into a layered Zn(II)/Al(III) double hydroxide to produce a heterogeneous catalyst for the oxidation of aliphatic and aromatic thiols by air or O₂. Intercalation is thought to prevent the formation of the inactive Mo(V) species which occurs with the free complex in solution [84, 85].

Complexes of the type [MoO₂(L)] where $H_2L = N(CH_2CH_2OH)_3$, $HN(CH_2CH_2SH)_2$, or $HOCH_2CH_2NMeCH_2CH_2OH$ have been prepared from [MoO₂(acac)₂]. The second of these is rigonal bipyramidal and transfers an oxo ligand to PPh₃ to afford the Mo(V) dimer [Mo₂O₃(L)₂] [86]. The electrochemistry of [MoO₂L₂], [Mo(O)(S)L₂] and [MoS₂L₂] where HL is piperidine-N-oxide has been studied and shows a one-electron reduction to Mo(V) but on a longer timescale replacement of S by O and release of HL also occurs [87].

Further details of the interaction of solutions of MoO₃ in HCl with various solvents have appeared; in this way, adducts [MoO₂Cl₂(solv)₂] where solv = dmf, hmpa, dmso or diglyme have been isolated. The complex where solv = H_2O can also be made and stabilised with polyethers, and the structure of [MoO₂Cl₂(H₂O)₂].2,5,8-trioxanonane shows that the ether is hydrogen bonded to the coordinated water molecules [88]. The catalytic activity of [MoO₂X₂(dmso)₂] in oxygen atom transfer to PPh₃ and deoxygenation of azoxybenzene was examined; the complex with X = Cl was most effective. Oxygen atom transfer from [MoO₂Cl₂(dmf)₂] to PPh₃ and from dmso to [MoOCl₂(dmf)₂] are both second order reactions [89]. The synthesis and vibrational spectra of a number of adducts of O- and N-donors such as dme, tmeda, bpy, thf and 2,5,8-trioxanonane with [MoO₂Cl₂] and other halides such as MoCl₄ and MoOCl₃ have been reported [90]. Adducts of [MoO₂Cl₂] with Schiff's bases derived from salicylaldehyde and various hydrazones have been

characterised [91], and an adduct with 2-mercapto-3-phenylquinazolin-4-one has been prepared [92]. The interaction of [MoO₂Cl₂] with tetrahydropterin affords [MoOCl₃(L)] in which a dihydropterin is coordinated in a quinonoid form [93].

Numerous complexes of the MoO_2^{2+} unit containing Schiff's base ligands have been prepared and studied. For uninegative ligands (from HL.) they usually take the form [MoO₂L₂] or [Mo₂O₅L₂], and for dianionic ones (from H₂L) they tend to be [MoO₂L(S)] where S = solvent. Molybdate units can also be anchored to polymer supports through didentate Schiff's base linkages [94]. Further details of the complexes prepared are given below in Table 1.

Carbonyl compound	Amine	Complex type	Reference
Salicylaldehyde	H ₂ NNHC(S)SMe	[MoO ₂ L(S)] S = MeOH, dmf, py, dmso	[95]
Salicylaldehyde	Girard's reagent P [C ₅ H ₅ NCH ₂ CONHNH ₂]Cl	[MoO ₂ (L)(MeOH)]Cl	[96]
Salicylaldehyde	Girard's reagent T [Me3NCH2CONHNH2]Cl	[MoO ₂ (L)(MeOH)]I	[97]
Salicylaldehyde	Malonyl dihydrazone	$[{MoO_2(dmso)}_2(L)]$	[98, 99]
Salicylaldehyde o-hydroxyacetophenone	Thiosemicarbazide	[MoO ₂ (L)(MeOH)]	[100]
Isonicotinic acid	Hydrazine	[MoO ₂ (L)(S)]	[101]

Table 1. Dioxomolybdenum (VI) complexes with Schiff's base ligands

The complex [MoO₂(L)(MeOH)], where H₂L (7), is the Schiff's base derived from 5-chlorosalicylaldehyde and the amine H₂NCMe(CH₂OH)₂, reacts with cupric acetate in MeOH/MeCN to give a complex formulated as [Cu₂Mo₂O₄(L)₂(OMe)₂], which on heating in MeCN with bpy afforded [CuMo₃O₈(L)₂(bpy)₂]. This compound, (8), contains a Mo₃O₈²- unit bound to a Cu(bpy)₂²+ fragment [102].

The reaction of [MoO₂(acac)₂] with two equivalents of [R¹R²NNH₃]X (R¹ = Ph, R² = Ph or Me; X = Cl, Br, I) in MeCN affords [MoX₂(acac)(NHNR¹R²)(NNR¹R²)] which contains two different types of hydrazido ligand [103]. Subsequent reaction with phosphines (L = PPh₃, PPh₂Me, PMe₂Ph) gives [Mo(NNR¹R²)₂Cl₂L₂] with elimination of acacH. On heating the complex with L = PPh₃, one phosphine ligand dissociates to afford [Mo(NNR¹R²)₂Cl₂L] [104]. The reaction of [MoO₂(dtc)₂] with Me₂NNH₂ gave [MoO(NNMe₂)(dtc)₂], with cis oxo and hydrazido ligands confirmed by an X-ray structure of the complex with dtc = S₂CN¹Bu₂. Treatment of the dioxo complex with HCl gave seven-coordinate [MoOCl₂(dtc)₂] [105].

The interaction of [MoO₂(dtc)₂] (dtc = S₂CNEt₂) with acetohydroxamic acid, MeCONHOH. gave [NH₂Et₂][MoO₂(MeCONHO)(MeCONO)] (9), in which the hydroxamate and hydroximate ligands are both O,O-bonded. Protonation gave neutral [MoO₂(MeCONHO)₂] (10) [106]. The reaction of [MoO₂(acac)₂], PPh₃ and PhCONHNH₂ in refluxing MeOH produced (11) as the major product by a template condensation of the hydrazone with acac ligand [107]. A second product from the reaction, isolated in 5% yield, is the Mo(V) species (12) [108]. A selection of unusual complexes, (13)-(16), have been made by reaction of Mo(VI) species with acetone

oxime, Me₂C=NOH, as detailed in equations (i)-(iv) [109, 110]. Further reaction of compound (16) with [NBu₄]₂[Mo₂O₇] gave [NBu₄]₂[Mo₄O₁₀(NO)(OMe)(Me₂CNO)₂].

$$[MoO_2(acac)_2] + Me_2CNOH, MeOH, r.t. \rightarrow [Mo_4O_{10}(OMe)_4(Me_2CNHO)_2] \ (i) \\ [MoO_2(acac)_2] + Me_2CNOH, MeOH, heat \rightarrow [Mo(NO)(acac)_2(Me_2CNO)] \ (14) \ (ii) \\ [NBu_4]_2[Mo_8O_{26}] + Me_2CNOH \rightarrow [NBu_4]_2[Mo_4O_{12}(Me_2CNO)_2] \ (15) \ (iii) \\ [NBu_4]_2[Mo_6O_{19}] + Me_2CNOH \rightarrow [\{Mo(NO)(OEt)(Me_2CNO)_2\}_2] \ (iv)$$

8.1.4 Complexes with sulfur donor ligands

The salt [PhCH₂NMe₃]₂[MoS₄] has been used as a sulfur transfer reagent in the solid phase synthesis of phosphorothioate oligonucleotides [111]. The reaction of [MoS₄]²⁻ with [NEt₄][Mo(CO)₄(dtc)] in MeOH gave the complex [NEt₄]₂[(OC)₄Mo(μ -S)₂Mo(μ -S)₂Mo(CO)₄]; the ⁹⁵Mo NMR spectrum confirms the presence of two different oxidation states [112]. A similar compound, [R₂Ni(μ -S)₂Mo(μ -S)₂NiR₂|²⁻ (R = C₆F₅) was prepared from a 1:1 ratio of [MoS₄]²⁻ and [Ni₂R₄(μ -OH)₂]²⁻; if a 2:1 ratio was used in the presence of additional NBu₄+, the dinuclear complex [R₂Ni(μ -S)₂MoS₂|²⁻ was produced [113]. Similarly [MoS₄]²⁻ reacts with two equivalents of CuCN in MeCN to give [PPh₄][(NC)Cu(μ -Se)₂Mo(μ -

Se)₂Cu(CN)]. Addition of PMe₂Ph to this compound gave [PPh₄]₂[(NC)Cu(μ -Se)₂MoSe₂] [114]. The reaction of [Mo₂(μ -S₂)₂(dtc)₄][BF₄]₂ or [MoO(S₂)(dtc)₂] (dtc = S₂CNEt₂ or S₂CNMe₂) with the electron-deficient alkyne DMAD (MeO₂CC=CCO₂Me) gives the two unusual isomeric complexes, orange (17) and green (18), by coupling of the alkyne with the sulfur and dtc ligands. Heating (17) causes it to rearrange to (18) [115].

8.2 MOLYBDENUM(V)

8.2.1 Complexes with halide ligands

Iodine and molybdenum EXAFS spectra have been recorded for [I(MeCN)₂][MoF₆] and [I(py)₂][MoF₆], as well as [I(py)₂][NO₃] and [Ag(py)₄][MoF₆]; they provide good evidence for discrete linear IL₂ molecules both in the solid state and in MeCN solution [116]. Infra-red spectra of the vapour above MoCl₅ showed the presence of two species; one was MoCl₅ monomer, which shows four fundamental IR-active vibrations consistent with D_{3h} symmetry, and the other was an impurity of MoOCl₃ [117]. The addition of two equivalents of AlMe₃ to various Mo halides, including MoCl₅, [MoOCl₃], [MoCl₃(OMe)₂] and [MoCl(OMe)₄], affords carbonyl methylenating agents which are thought to be binuclear, with structures related to the Tebbe reagent. Similar results were obtained with ZnMe₂ or MeMgBr in some cases [118]. The solid state polymerisation of [HC≡CCH₂PPh₃]Br by MoCl₅ and S... h₄ or EtAlCl₂ gives a quantitative yield of high molecular weight material [119], and MoCl₅ has also been used as a Lewis acid to effect a ring expansion rearrangement of a steroidal organomercury compound [120].

Template condensation of acetone with en occurred in the presence of $[MoOX_5]^{2-}$ (X = Cl, Br) to give $[MoO(L)X]^{2+}$ where L = 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetraazacyclotetradeca-4,11-diene. The macrocycle could be decomplexed with perchloric acid [121]. A complex product, $[H_4L][Mo(OH)Cl_4(H_2O)][Cl]_3[OH]$, has been isolated from the reaction of $[MoOCl_5]^{2-}$ with the related macrocycle 5,7,7,12,14,14-hexamethyl-1,4,8,11-tetrazacyclotetradecane (L) [122]. Interaction of Mo(V) oxo species with Cl⁻ and ox²⁻ in the presence of 2-(2-pyridyl)-benzothiazole (L) produced species such as $[H_2L][MoOCl_5]$, $[MoOCl_3(L)]$, [MoO(Cl)(ox)L], and

[Mo₂O₃Cl₄L₄] [123]. Similar compounds were obtained from bis-(2-benzimidazolyl)alkanes [124].

The magnetic circular dichroism spectra of [MoOCl4]⁻ and its Cr and W analogues have been analysed in two papers. The temperature and field dependence are consistent with a paramagnetic ground state, and the lowest energy bands are assigned to $d_{xy} \rightarrow d_{xz}$, d_{yz} and $d_{xy} \rightarrow d_{x^2,y^2}$ ligand field transitions; the first of these displays vibronic coupling to the symmetric Mo=O vibration. The low energy of the $b_1(Cl) \rightarrow b_2(d_{xy})$ charge transfer band is advanced as an explanation of the inverted EPR spectroscopic parameters of these compounds and molybdenum hydroxylase enzymes [125]. The high resolution single crystal absorption spectra of [PPh4][MoOCl4] and its H₂O adduct were also recorded and assigned, and used to interpret the spectra of lower symmetry complexes of the type [(HBpz*3)MoOX₂] [126].

8.2.2 Complexes with nitrogen donor ligands

The nitrido porphyrin complexes $[Mo(\equiv N)(P)]$ $(H_2P = \text{tetraphenyl}, -\text{tolyl} \text{ or -mesityl} \text{ porphyrin})$ have been prepared by reaction of the dimers $[Mo(P)]_2$ with Me₃SiN₃ [127]. The synthesis of a Mo(V) tetrasulfophthalocyanine complex has been reported; photolysis in ⁱPrOH leads to hydrogenation of the ligand, with reoxidation being effected by O₂ [128]. The electrochemistry of [MoO(OH)(Pc)] shows oxidation to Mo(VI) and reduction to Mo(IV) as well as other ligand-centred redox processes; the complex is readily photo-oxidised [129].

Several papers deal with Mo(V) complexes of the hydridotris(3,5-dimethylpyrazolyl)borate ligand, HBpz*3 (also known as Tp* and denoted for the next two paragraphs by L). The single crystal, room temperature Q-band EPR spectra of [LMo(E)Cl₂] (E = O or S) and [LMoO(NCS)₂] doped into the tin compound [LSnCl₃] have been recorded and analysed [130]. The X-band frozen EPR spectra of [LMo(O)(SC₆H₄S)] (a rare example of a mono-oxo Mo(V) dithiolene complex) and [LMo(O)(SCH₂CH₂S)] both show an unusual coupling pattern which is evidently a feature of the sulfur ligation. This pattern is different to that observed for the low pH form of sulfite oxidase, though the g values for the two systems are similar [131]. The reaction of [LMoO₂Br] with [NBu₄][SH] affords the Mo(V) dimer [{LMoO}₂(μ -O)(μ -S₂)], and oxygen atom transfer from [LMoO₂(SPh)] to PPh₃ affords [{LMo(SPh)}₂(μ -O)] by a conproportionation reaction. The mixed valence species [LMoO₂(μ -O)Mo(O)(X)L] (X = SPh, Br) can be made by treating [LMoO₂Br] with PhSH and NEt₃ [132].

A study of the rates of heterogeneous electron transfer and E° values for compounds of the type [LMoO(X-X)] where X-X is a chelating ligand with O- or S- donors has shown that the rates are about 1.5 times faster when X = S and the E° value changes by about 1 V, i.e. sulfur ligation favours electron transfer [133]. Enemark and coworkers have shown that a Mo(VI)O₂ \rightarrow Mo(IV)O oxygen atom transfer can be coupled to the reoxidation of the Mo(IV) species to Mo(V) by an iron porphyrin. Thus, reaction of [LMoO₂Cl] with PPh₃ gives [LMoOCl], which in turn reacts with [Fe(TPP)Cl] to give [LMoOCl₂] and [Fe(TPP)]. The kinetics of the oxidation step

indicate an inner-sphere halide transfer mechanism [134]. Taking this a step further, they have prepared a modified porphyrin ligand with a pendant catechol functionality which can be coordinated in the complex [LMoO{cat-PFe(B)₂}][Cl] where B = N-methyl imadazole. The Mo(V) and Fe(III) centres are essentially independent electrochemically, but a weak interaction was observed in the EPR spectrum [135].

The related hydridotris(3,5-dimethyl-1,2,4-triazolyl)borate complex [(HBtz*3)MoO₂(SPh)] undergoes reduction with [CoCp₂] to give the first example of a structurally characterised Mo(V) radical anion, [CoCp₂][(HBtz*3)MoO₂(SPh)]. The structure differs from that of the Mo(VI) starting material in that the Mo–O bonds are longer and the O-Mo-O angle has opened up slightly [136].

The geometries of several Mo(V) and Mo(VI) complexes with N₂S₂ and N₂O₂ donor ligands have been optimised by ab initio and INDO methods, and , where appropriate, their EPR g values have been calculated. The ligands involved are HXC₆H₄NMeCH₂CH₂NMeC₆H₄XH where X = O or S, and HSCH₂CH₂NMeCH₂CH₂NMeCH₂CH₂SH, and the complexes modelled were of the type [MoO₂L], [MoO₂L]⁻ and [MoO(OH)L] [137].

The reaction of [MoCl₄(thf)₂] with allyl azide followed by Ph₃P=O gave the imido complex cis,mer-[MoCl₃(OPPh₃)₂(=NCH₂CH=CH₂)]; in moist air it hydrolyses to [MoOCl₃(OPPh₃)₂] [138].

8.2.3 Complexes with oxygen and sulfur donor ligands

A spectrophotometric and EPR spectroscopic study of aqueous Mo(V), made by reducing Mo(VI) with Hg, in 2-9M H₂SO₄ noted a concentration dependence in the most acid solutions, attributed to a tetrameric species [139]. A method of determining Mo(V) as a chromone complex has been developed [140]. The structure of the Mo(V) hydroxide formed by reduction of molybdate with hydrazine hydrate has been established as $[Mo_2O_4(OH)_4(H_2O)_2]^{2-}$, which reacts with oxalate to give $[Mo_2O_4(ox)_2(H_2O)_2]^{2-}$. Reducing molybdate with NaBH₄ or hydrolysing $[MoOCl_5]^{2-}$ gives related species [141]. A solid state reaction between ammonium molybdate, sodium oxalate, NH₂OH.HCl and NBu₄Br afforded $[NBu_4]_2[\{MoO(OH)Cl_2\}_2(\mu-ox)]$ [142]. Extended Hückel calculations have been carried out which support the proposed mechanism for the photolabilisation of $[Mo_2O_4(H_2O)_mL_{6-m}]^{n+}$ (L = H₂O, Cl⁻, NCS⁻) in aqueous acid, involving intermediates with a singly-bridged $Mo_2O_3^{4+}$ core [143].

The reaction of MoCl₅ with EtOH in CHCl₃ affords a quantitative yield of the diamagnetic $[Cl_2(O)Mo(\mu-OEt)_2(\mu-EtOH)Mo(O)Cl_2]$ (19); the unsolvated species and its CHCl₃ solvate were both structurally characterised [144]. Reaction of this compound with Me₃SiCH₂CH=CH₂ esults in the elimination of propene and formation of $[Mo₆O₆Cl₆(\mu-Cl)₂(\mu₃-O)₂(\mu-OEt)₆]$ (20) [145].

The reaction of [MoO₂(acac)₂] with H₃hidpa [HON(CHMeCO₂H)₂] yields [Mo(hidpa)₂]⁻, which is the molybdenum analogue of amavadin. Interestingly one of the hidpa ligands has the R,R configuration and the other the R,S [146]. The synthesis of [MoO(L)NCS)] where H₂L are the pentadentate Schiff's bases N,N''-bis(salicylidene)diethylene triamine and N,N''-bis(salicylidene)

dipropylene triamine, has been reported; they undergo a series of one electron electrochemical reductions [147].

The interaction of [MoO₄]²⁻ with thioglycollic acid, HSCH₂CO₂H, has been studied in detail. Initially [MoO₂(SCH₂COO)₂]²⁻ is formed, which is reduced by more acid to give two Mo(V) species in equilibrium; the major one of these is [NBu₄]₂[Mo₂O₃(SCH₂COO)₃].2H₂O (21), which was isolated and structurally characterised. The Mo(V) dimer is probably formed by conproportionation since reduction of these compounds further gives the Mo(IV) species [MoO(SCH₂COO)₂]²⁻ and [MoO(SCH₂COO)(solv)₂] [148].

Oxidation of $\{Mo(S_2)(dtc)_3\}$ (dtc = S_2CNEt_2) with one equivalent of m-CPBA gave the S_2O complex $\{Mo(S_2O)(dtc)_3\}$ in 70% yield. The structures and electronic properties of the two complexes are very similar but EHMO calculations indicate that S_2O is a worse π -acid and π -base than S_2 [149]. Treatment of $\{MoO(dtc)_3\}[BF_4]$ (dtc = S_2CNR_2 where R = Et, iPr , iBu) with B_2S_3 produced the dinuclear complex $\{Mo_2(\mu-S_2)_2(dtc)_4\}[BF_4]_2$ as well as $\{Mo(dtc)_4\}[BF_4]$ [150]. The crystal structure of the salt $\{Mo(dtc)_4\}[Sm(dtc)_4]$ has been determined [151, 152], and the oxidative decarbonylation of $\{Mo(CO)_5I\}^-$ with dtc- (dtc = $S_2CNC_4H_8$) gave $\{Mo(dtc)_4\}[I_3\}$ and $\{Mo_2O_2S_2(dtc)_2\}$ [153]. The electrochemistry of compounds of the type $\{Mo_2O_4-nS_n(dtc)_2\}$ has been studied for a number of dtc ligands and n = 0-2; with the exception of the complex with n = 2 and dtc = S_2CNPh_2 , all showed a quasi-reversible one electron reduction [154]. A molecular orbital study of $\{Mo_2S_4(SCH_2CH_2S)_2\}^2$ and its mono- and bis-adducts with $Cu(PPh_3)^+$ fragments has

appeared [155]. Complexes [Mo₂O₄L₂] and [Mo₂O₂S₂L₂] where HL is 5-phenylazo-8-hydroxyquinoline have been prepared [156].

8.3 MOLYBDENUM(IV)

8.3.1 Complexes with halide and cyanide ligands

The reactions of [MoCl4(MeCN)₂] with ligands such as PPh₃, dppe or phen have given the complexes [MoCl₄L₂] and [MoCl₄(L-L)] [157]. The reaction of [MoCl₄(thf)₂] with allyl azide gives [MoCl₄(thf)(=NCH₂CH=CH₂)]; dissolving this in pyridine produced a 5% yield of the unusual nitrido species [Cl₃(py)₂Mo(μ -N)Mo(py)₂Cl₃]⁻ as its N-allylpyridinium salt. The two Mo-N distances are 1.887(10)Å and 1.793(10)Å, neither identical nor yet sufficiently different to warrant a description as a Mo=N-Mo bonding arrangement [158]. Oxidative decarbonylation of [Mo(CO)₆] with S₂Cl₂ produced a green material of empirical formula Mo₂S₂Cl₆.CH₂Cl₂ which on further reaction with thf, tht or PhCH₂SMe gave the dimeric Mo(IV) species [{MoCl₃L}₂(μ -S₂)(μ -L)] or the Mo(IV)/Mo(V) mixed valence complex [(Me₂S)₂Cl₂Mo(μ -S₂)(μ -S)MoCl₃(SMe₂)] in the case of SMe₂ [159].

Outer sphere charge transfer absorptions have been observed in the visible and near-IR region for various cyanometallates, including $[Mo(CN)_8]^{4-}$, in the presence of $[Fe(CN)_6]^{3-}$ as acceptor [160]. The kinetics of the electron transfer reaction between $[Mo(CN)_8]^{4-}$ and the Mn(III) complex of trans-1,2-diaminocyclohexane N,N,N'N'-tetraacetate have been studied by stopped flow methods [161]. The interaction of $[Mo(CN)_8]^{4-}$ with $[Os(en)_2(\eta-H_2)(H_2O)]^{2+}$ initially forms a Os(II)-Mo(IV) species, $[Os(en)_2(\eta-H_2)Mo(CN)_8]^{2-}$, which can be oxidised to a Os(IV)-Mo(IV) one [162]. The isolation of $[(NC)_7Mo(\mu-CN)Os(NH_3)_5]^-$ has also been achieved; it exhibits a moderately intense intervalent charge transfer band at 638 nm, and shows an irreversible electrochemical oxidation to Mo(V) [163]. A multinuclear NMR spectroscopic study of the protonation of aqueous solutions of $[MoO_2(CN)_4]^{2-}$ has been undertaken; and a value of 9.88 was determined for the pK_8 of $[MoO(H_2O)(CN)_4]^{2-}$ compared with 7.87 for its tungsten analogue [164].

8.3.2 Complexes with nitrogen and phosphorus donor ligands

As part of a general study of the synthesis of early transition metal porphyrin complexes, $[Mo(TPP)Cl_2]$ was prepared from $[MoCl_4(MeCN)_2]$ and $[Li_2(thf)_2][TPP]$ [165]. The reaction of $[MoCl_4(thf)_2]$ with $Li_3[N(CH_2CH_2NR)_3]$ produced the trigonal bipyramidal molybdenatrane complex $[MoCl_3(N(CH_2CH_2NR)_3)]$ (22) where $R = SiMe_3$, $SiMe_2Ph$, or $SiMePh_2$. The chloride ligand could be replaced with organic groups from MeLi or LiC = CR' (R' = Me, Ph, $SiMe_3$). When LiC = CH was used, coupling of the acetylide occurred to give [LMo = CCH = CHC = MoL] [166]. The reaction of $[Mo(NMe_2)_4]$ with the related amine $N(CH_2CH_2NHAr)$ ($Ar = C_6F_5$) afforded a similar compound $[Mo(NMe_2)_4]$ $N(CH_2CH_2NAr)_3$. From this a range of other derivatives were

prepared including [LMoCl], [LMo(OTf)], [LMo(\equiv N)] and [LMo(\equiv NMe)][OTf]. Reduction of [LMo(OTf)] under N₂ gave [LMo(μ -N₂)MoL]; the same species could be made for the silylated triamine by reacting the lithiated ligand directly with [MoCl₃(thf)₃] under N₂ [167].

$$\begin{array}{c|c}
R & & & & & & & \\
R & & & & & & \\
R & & & &$$

The low temperature electrochemistry of [MoCl(NMe)(dppe)2]+ in thf has been investigated by microelectrode techniques. One electron reduction is followed either by a further four-electron reduction to [Mo(N2)2(dppe)2] and MeNH2, or deprotonation of further cationic starting material to form the methyleneimido complex [MoCl(N=CH2)(dppe)2] depending on the electrode material [168]. Electrochemical reduction of $[MH_2(\eta^2-O_2CMe)(dppe)_2]^+$ (M = Mo, W) affords initially [MH2(η^1 -O2CMe)(dppe)2] and then an anionic species which is unstable for Mo but in the case of W can be trapped as [WH₃(η^1 -O₂CMe)(dppe)₂] [169]. Protonation of the 2methallyl complex [MoH(n³-H₂CCMeCH₂)(dppe)(n¹-dppe)] with HCl occurred to give [MoH₂Cl₂(dppe)₂], with the organic fragment dimerising to ¹BuCH₂CMe=CH₂ [170]. The reaction of [MoF(NNH₂)(dppe)₂][BF₄], made from [Mo(N₂)₂(dppe)₂] and HBF₄, with 2,5dimethoxy tetrahydrofuran gives the pyrrolyl imido complex [MoF(=NNC4H4)(dppe)2][BF4]; pyrrole can be liberated on reduction with LiAlH4 [171]. Alkylation of $[MoF(NN=CHCH=CHMe)(dppe)_2]^+$ with lithium dialkyl cuprates, LiCuR₂ (R = Me, Ph), occurred on the terminal β-carbon to produce [MoF(NNCH=CHCHMeR)(dppe)₂], which could subsequently be protonated or alkylated on the α-carbon [172]. The complex [MoH4(dippe)2] (dippe = iPr2PCH2CH2PiPr2) could be made either from [MoCl4(thf)2], dippe and NaBH4, or from [Mo(N₂)₂(dippe)₂], itself available in low but reproducible yield by Na/Hg reduction of [MoCl₃(thf)₃] with dippe under N₂. Addition of HBF₄ to the dinitrogen complex gave the hydrazide [MoF(NNH₂)(dippe)₂][BF₄]. Reducing [MoCl₃(thf)₃] and dippe under Ar gave [MoCl₂(dippe)₂] [173].

Treatment of [MoH₄(dppe)₂] with alkyl malonates $CH_2(CO_2R)_2$ (R = Me, Et, Pr) gave the complexes [MoH{CH(CO₂R)₂}(dppe)₂] in which the malonates act as O,O'-donors rather like an acac ligand [174]. The reaction of [MoH₄(PMe₂Ph)₄] with nido-[2-(FeCp)B₅H₁₀] affords the unusual compound closo-[1-(FeCp)-2-{MoH(PMe₂Ph)₃}B₅H₇] (23) [175].

8.3.3 Complexes with oxygen and sulfur donor ligands

The synthesis of [NEt4]2[MoO(tdt)2], where tdt = toluenedithiolate, and the X-ray structure of its Et2O adduct have been reported. This compound is inert to oxidation by Me3NO, either because of the narrow SMoS angles preventing coordination or strong Mo-S bonds preventing rearrangement from a *trans*-dioxo to the more stable *cis*-dioxo structure [176]. Similar complexes have been prepared with the [3-SiPh3-1,2-C₆H₃S₂]²⁻ and [5-SiPh3-3-Me-1,2-C₆H₂S₂]²⁻ ligands; the first of these does react with Me3NO to give [MoO₂(Ph₃Si-bdt)₂]²⁻ quantitatively with no evidence for the formation of dimeric Mo(V) species [177]. Two groups have reported complexes of the mnt ligand, ¬[SC(CN)=C(CN)S]¬; square pyramidal [MoO(mnt)₂]²⁻ could be oxidised with Me₃NO to [MoO₂(mnt)₂]²⁻, which in turn oxidised [HSO₃]¬ to [HSO₄]¬ without forming a Mo(V) species. The Mo(IV) species will undergo a quasi-reversible 1-electron oxidation, but also disproportionates to [Mo(mnt)₃]²⁻ and MoO₃. The corresponding [MoO(S₂C₂(CO₂Me)₂)₂]²reacts with Me₃NO to give a transient Mo(VI) species which decomposes to thiolate oxidation products, which indicates that the mnt ligand is able to provide some extra stabilisation for the Mo(VI) state [178, 179]. The reaction of [MoO(S₂PiPr₂)₂] with K[H₂Bpz*₂] produced [(H₂Bpz*₂)MoO(S₂PiPr₂)₂], which can be reversibly oxidised to Mo(V) [180].

Further complexes of 2-aminocyclopentene-1-carbodithioate, [Mo(ox)(acda)(Racda)] (R = Et, Pr, Bu) have been prepared; they are weakly paramagnetic with a spin-paired d² ground state and undergo reversible 1-electron oxidation and reduction [181].

The complex trans-[Mo(NH)(OTf)(L)][OTf] (L = Meg[16]ane-S₄) is made by reaction of [Mo(N₂)₂(L)] with Me₃SiN₃ to give [Mo(\equiv N)(N₃)(L)] followed by addition of 4 equivalents of HOTf. The α -hydroxyalkylimido complexes [Mo{NC(OH)R¹R²}(OTf)(L)][OTf] were formed by reaction with Me₂CO or PhCHO, while NaBPh₄ afforded the adduct [Mo(NBPh₃)(OTf)(L)][OTf] [182].

8.4 MOLYBDENUM(III)

8.4.1 Complexes with halide and phosphine ligands

The deuterium NMR spectra of $[MoX_3(py-d^5)_3]$ (X = Cl, Br, NCS, F) have been used to assign fac or mer structures [183]. The complexes $[MoCl_3L_2(MeCN)]$ where L = PPh₃ or L₂ = phenylene diamine have been prepared from MoCl₅; the chloride ligands can be removed with AgClO₄ to form cationic solvento species [184]. Reaction of $[MoCl_3(thf)_3]$ with the macrocycle [15]-aneN₄ (1,4,8,12-tetraazacyclopentadecane) gave cis- $[MoCl_2([15]-ane-N_4)]$ [Cl] [185].

The compound cis-[pyH][MoCl₄(py)₂] was prepared by reacting [pyH]₃[MoCl₆] with py in MeCN, and the corresponding trans complex was obtained by its isomerisation above room temperature. A series of salts were made by cation exchange and the structure of cis-Rb[MoCl₄(py)₂].H₂O was determined, as was that of cis-[NH₄][MoCl₄(py)₂].0.5H₂O.py [186, 187]. The bromide [pyH][MoBr₄(py)₂] was made as a mixture of cis and trans isomers from

[MoBr₅(H₂O)]⁻ and py; the *cis* isomerises to *trans* in refluxing MeCN. The X-ray structure of *cis*-[NH₄][MoBr₄(py)₂] was determined [188].

Molecular orbital calculations on [C]₃[Mo₂X₉] (C = K, Rb, Cs, NMe₄; X = Cl, Br, I) using SCF-X α -SW methods have shown that the Mo-Mo σ and π -bonding interactions are reduced for Br and I compared to Cl leading to longer metal-metal distances [189]. The synthesis of several salts of the [Mo₂(H)Br₈]³- anion have been reported, together with the crystal structure of the piperidinium salt and studies of their thermal decomposition [190, 191].

Conproportionation of [MCl₂(PMe₃)₄] with [M'(E)Cl₂(PMe₃)₃] (M = Mo, W; E = O, S) in what amount to incomplete E-atom transfer reactions afford the edge-sharing bioctahedral complexes [(Cl)(PMe₃)₃M(μ -E)(μ -Cl)M'Cl₂(PMe₃)₂] (24). Two different isomeric MoW complexes were obtained depending on the starting materials used. Treatment of [MoCl₂(PMe₃)₄] with S=PMe₃, ¹BuSH or ethylene sulfide also gave [Mo₂Cl₃(μ -Cl)(μ -S)(PMe₃)₅] [192]. The oxidative addition of S₂Pr₂ to [Mo₂Cl₄(PrSCH₂CH₂SPr)₂] produced [Mo₂Cl₄(μ -SPr)₂(PrSCH₂CH₂SPr)], and then ligand exchange yielded [Mo₂Cl₄(μ -SPr)₂(Et₂PCH₂CH₂PEt₂)₂]. The two resulting edge-sharing bioctahedral compounds have Mo-Mo distances of 2.682(6)Å and 2.769(1)Å respectively, consistent with double bonds [193].

8.4.2 Complexes with oxygen and nitrogen donor ligands

Addition of [NBu₄][CN] to [Mo₂(OR)₆] (R = ¹Bu, ⁱPr, CH₂ⁱBu) affords initially [NBu₄][Mo₂(OR)₆(CN)], with a bridging cyanide, and then [NBu₄]₂[Mo₂(OR)₆(CN)₂]; coordination of the second cyanide is less favourable [194]. Addition of KH and 18-crown-6 to [Mo₂(OCH₂ⁱBu)₆] gave [K(18-C-6)][Mo₄(μ ₄-H)(OCH₂ⁱBu)₁₂] in which the hydride bridges all four metals of a butterfly cluster [195].

8.5 MOLYBDENUM(II)

85.1 Complexes with halide and phosphine or carbonyl ligands

The reaction of [MoBr₂(CO)₂(PPh₃)₂] with aqueous NaBF₄ in CH₂Cl₂ gave initially [Mo₂(μ -Br)(μ -F)₂(CO)₄(PPh₃)₄]⁺, which was structurally characterised and showed rather long Mo-Br distances. The bromide ligand was gradually replaced under the reaction conditions by F or OH. Use of KPF₆ in the same reaction gave [Mo₂(μ -Br)_n(μ -OH)_{3-n}(CO)₄(PPh₃)₄]⁺ where n = 1

or 2 [196]. Treatment of the complex [MoBr₂(CO)₂(PPh₃)₂] with NaNO₂ in MeOH gave [Mo(NO₂)₂(CO)₂(PPh₃)₂] which contains chelating, equivalent nitrite groups [197]. A similar species, [MoX(NO₃)(CO)₂(PPh₃)₂] (X = Cl, Br) with a chelating nitrate was made from NH₄NO₃ [198].

Oxidation of [Mo(CO)₃(MeCN)₃] with Br₂ affords [MoBr₂(CO)₃(MeCN)₂], which reacts with one equivalent of L (L = PPh₃, AsPh₃, SbPh₃) to give [MoBr₂(CO)₃(MeCN)(L)] [199]. The MeCN ligands in the analogous iodide [MoI₂(CO)₃(MeCN)₂] can be replaced by the chelating thioether PhSCH₂CH₂SPh; with a tridentate ligand [MoI₂(CO)₂(MeSCH₂CH₂SCH₂CH₂SMe)] was prepared [200]. In a similar way, [MoI₂(CO)₂(triphos)] [triphos = PhP(CH₂CH₂PPh₂)₂] was also made [201]. Addition of 1-4 equivalents of pyrazole to [MoI₂(CO)₃(MeCN)₂] gave [Mo(µ-I)(CO)₃(Hpz)₂], [MoI₂(CO)₃(Hpz)₂], [MoI(CO)₃(Hpz)₃][I] and [MoI(CO)₂(Hpz)₄][I] respectively [202]. The use of Polya's theorem to enumerate the possible geometrical isomers of these and other seven-coordinate species has been described [203].

Oxidative addition of GeCl₄ to [Mo(CO)₃(MeCN)₃] gave [MoCl(GeCl₃)(CO)₃(MeCN)₂]; the MeCN ligands were then replaced by various other ligands [204]. For example, with Ph₃P=E (E = O or S), [Mo(μ -Cl)(GeCl₃)(CO)₃L]₂, [MoCl(GeCl₃)(CO)₃L₂] and [Mo(GeCl₃)(CO)₃L₃][Cl] were produced with 1-3 equivalents respectively [205]. Addition of phosphine ligands to [MoCl(SnRCl₂)(CO)₃(MeCN)₂] (R = Ph, Me) gave [MoCl(SnRCl₂)(CO)₃L(MeCN)] in CH₂Cl₂, but in acetone a chloride-bridged dimer or an acetone complex was formed depending on the concentration [206]. Oxidative addition of RSnCl₃ (same R) to [Mo(CO)₃(phen)(PPh₃)] gave [MoCl(SnRCl₂)(CO)₂(phen)(PPh₃)] which has a five-coordinate tin atom with a chloride bridging the Mo-Sn bond [207]. Displacement of the MeCN ligand and one carbonyl group in [Mo(S₂PX₂)(SnRCl₂)(CO)₃(MeCN)] by S₂CPR'₃ (R = Ph, Bu; R' = Cy, iPr; X = OEt, Ph) gave [Mo(S₂PX₂)(SnRCl₂)(S₂CPR'₃)(CO)₂] in which one of the sulfur atoms of the S₂CPR'₃ ligand is within bonding distance of the tin atom [208]. Oxidative addition of HgCl₂ to [Mo(CO)₄(L₂)] (L₂ = 2,9-dimethylphen) gave [MoCl(HgCl)(CO)₃(L₂)] [209].

8.5.2 Complexes with nitrogen donor ligands

A short account of the synthesis of quadruply-bonded porphyrin dimers and the measurement of the barrier to rotation about the M-M bond has appeared [210]. The synthesis of the heterometallic examples [(OEP)MoOs(OEP)] and [(OEP)MoRu(TOEP)] (TOEP = dianion of 5-p-tolyloctaethylporphyrin) has been achieved by co-thermolysis of [(OEP)Mo(C₂Ph₂)] with the appropriate metal porphyrin complex. The heterometallic complex was separated from the two homonuclear ones by redox titration. There is no barrier to rotation about the MoRu bond, which means that either there is a very weak δ -bond or the d_{xy} orbitals are non-bonding [211].

Further developments in the extensive chemistry of the tris(3,5-dimethylpyrazolyl)borate complex [(HBpz*3)Mo(NO)X2] (X = Cl, Br, I) have been reported. This redox-active 16-electron complex reacts with alcohols and amines with elimination of HX and formation of

[(HBpz*3)Mo(NO)(X)(OR)] or [(HBpz*3)Mo(NO)(X)(NHR)], or the corresponding disubstituted species. The complexes [(HBpz*3)Mo(NO)X{EC₆H₃-3-R-4-Fc}] and their analogues with EC₆H₃-3-R-N=NC₆H₃-3-R'-4-Fc ligands (E = O, NH; R, R' = H, Me; X = Cl, I; Fc = ferrocenyl, C₅H₄FeCp) have been prepared and tested for their non-linear optical properties by the Kurtz powder test [212, 213]. In order to introduce an element of chirality into such compounds, the ligand (-)-HOCH₂CHMeC₁₀H₆-6-OMe was also used [214].

Attaching a (HBpz*3)Mo(NO)X unit to each end of the 4-(imidazol-1-yl)phenol ligand allows interaction between the metal centres to be probed. The starting 16e⁻, 17e⁻ system is valence trapped, but one-electron reduction yields a 17e⁻, 17e⁻ system which has a strong exchange interaction despite the fact that the ligand is unable to assume a planar structure easily [215]. The trinucleating ligands C₆H₃-1,3,5-(CH=CHC₅H₄N)₃ and C₆H₃-1,3,5-(CH=CHC₆H₄OH)₃ have been made; up to three Mo units can be attached to the three arms. For the first of these ligands, fast exchange was observed between two or three 17e⁻ Mo centres by EPR spectroscopy. Cobaltocene reduction of the tris-Mo complex of the second ligand produced a species with three 17e⁻ centres which showed an identical EPR spectrum [216].

Interaction between heterometallic redox centres has also been studied. Trinuclear MoCuMo complexes (25) were made from Cu(II) complexes of Schiff's base ligands derived from 2,5-dihydroxybenzaldehyde and various diamines, H_2NYNH_2 , where the spacer group $Y = (CH_2)_n$ (n = 2-5) or o-C₆H₄. The compounds undergo two sequential reductions at the Mo centres with weak interaction between the metals [217]. Complexes of dipyridyl ligands such as 4,4'-bpy, bis-(2-pyridyl)ethylene and α , ω -bis(2-pyridyl)alkanes have been made which have one of the pyridyl groups coordinated to a (HBpz*3)Mo(NO)Cl unit. The remaining pendant pyridyl group was then attached to the ruthenium porphyrin complexes [Ru(CO)(EtOH)(TPP)] and [Ru(thf)₂(TTP)] to give dinuclear and trinuclear systems. Weak electrochemical interactions between the metals could be detected, as well as a weak spin exchange interaction between the two Mo centres in the trinuclear [Ru(TTP){(HBpz*3)Mo(NO)Cl}₂] [218].

The complexes [(HBpz*3)Mo(NO)(SR)2] (R = Et, Bu, CH2CONHMe, CH2CONMe2 etc) have been made and a correlation observed between the IR stretching frequency v(NO) and the redox potential. The presence of inter- and intra-ligand hydrogen bonds was also noted [219]. New types of pyrazolyborate ligands have also been investigated; these include hydridotris(3-p-methoxyphenylpyrazolyl)borate [220], hydridotris(4-benzyl-3,5-dimethylpyrazolyl)borate [221], hydridotris(3-phenyl-5-methylpyrazolyl)borate and hydridotris(2H-benz[G]indazol-2-yl)borate

[222, 223]. In general complexes of these ligands are very similar to their HBpz*3 analogues, though adjusting the ligand does have subtle steric effects.

An unusual complex $[\{LMo(NO)(O)(OH)\}_2Na(H_2O)][PF_6]$ (26) where L = 1,4,7-triisopropyl-1,4,7-triazacyclononane has been prepared; it contains one nitrosyl ligand which bridges from Mo to two Na atoms, and another which is side-bonded to the sodium. The synthetic sequence involves bromination of $[LMo(CO)_2(NO)][PF_6]$ to $[LMo(NO)Br_2][Br_3]$, followed by eatment with H_2O and KPF_6 to give $[LMo(NO)(OH)_2][PF_6]$. Dissolution of this species in acetone with NaOH gave the complex or $[LMo(NO)(OH)_2][PF_6]$ depending on the conditions [224].

8.5.3 Complexes with oxygen donor ligands

The synthesis of a range of compounds of the type $[M_2(O_2CR)_4]$ (M = Cr, Mo, W) has been described where R is a long chain alkyl group, $(CH_2)_nCH_3$. In cases where n = 3-9 they show liquid crystal phases. The transition temperature can be lowered to an extent by using branched chains as R [225]. The exchange reaction of $[Mo_2(OAc)_4]$ with the carboranyl carboxylate $[1,2-C_2B_{10}H_{11}CO_2]$ — could only be persuaded to proceed as far as $[Mo_2(OAc)(O_2CR)_3]$, though a range of other metal carboxylates were successfully made with the same ligand [226]. A polymeric chain complex $[Mo_2(O_2C^tBu)_4(4,4'-bpy)]_n$ was made from the pivalate complex and the bpy ligand; the Mo-Mo distance in the product is 2.092(1)Å [227]. The incorporation of multiply metal-metal bonded dimers into ordered arrays has been reviewed [228], and an account of the calculation of transition energies in quadruply-bonded dimers using a model which only considers the δ and δ * electrons has been published [229].

Protonolysis of [Mo₂(OAc)₄] with HOTf affords [Mo₂(OTf)₄], which on addition of MeCN yields [Mo₂(MeCN)₈][OTf]₄. This serves as a useful precursor for other homoleptic species such as [Mo₂(NH₃)₈][OTf]₄ and [Mo₂(dmf)₈][OTf]₄ [230]. In the presence of a co-catalyst of EtAlCl₂, compounds such as [Mo₂(OAc)₂(MeCN)₆]²⁺ will catalyse the ROMP polymerisation of norbornene; when supported on silica, [Mo₂(MeCN)₈][BF₄]₄ was effective even without the cocatalyst [231]. The reaction of 9-ethyladenine with [Mo₂(O₂CR)₂(MeCN)₄][BF₄]₂

(R = Me, CHF₂) gave $[Mo_2(O_2CR)_2(\mu-L)_2(MeCN)_2][BF_4]_2$ (27) in which the two adenines are arranged in a head-to-tail way, bonding in an unprecedented way through N(6) and N(7). Coordination is accompanied by a prototropic shift from N(6) to N(1) which allows this to happen. The Mo-Mo distance is 2.1436(17)Å, typical for the quadruple bond [232].

On irradiation with visible light, the diphenyl phosphate complex [Mo₂{O₂P(OPh)₂}₄] reduces 1,2-dichloroalkanes and -alkenes. The inorganic product is the mixed valence Mo(II)/Mo(III) species [Mo₂{O₂P(OPh)₂}₄]+ which was structurally characterised as its BF₄-salt; time Mo-Mo distance of 2.191Å is slightly longer than in the neutral compound [233]. The reaction of [Mo(CO)₆] with Hmonp (7-methyl-1,8-naphthyridin-2-one) or the corresponding thione (Hmsnp) gave [Mo₂(monp)₄] and [Mo₂(msnp)₄] where the ligands act as uninegative N,O-or N,S-donors. The Mo-Mo distances are 2.090(4) and 2.131(2)Å respectively [234].

8.5.4 Complexes with sulfur donor ligands

The reaction of [Mo(SPh)(NO)(S4)], where the S4 ligand is "SC₆H₄CH₂CH₂SC₆H₄S", with phosphines gave 17-electron paramagnetic complexes [Mo(L)(NO)(S4)] (L = PMe₃, PEt₃, PMe₂Ph) which undergo reversible one-electron electrochemical oxidation and reduction. The dinitrosyl complex [Mo(NO)₂(S4)] was also prepared [235].

$8.6 \quad MOLYBDENUM(I)$

The electrochemistry of *trans*-[Mo(CO)₂(dppe)₂]⁺ and its Z-Ph₂PCH=CHPPh₂ analogue has been studied by cyclic voltammetry and potential sweep voltammetry. They undergo one-electron oxidation and reduction by a well-defined EC_{irrev} mechanism [236].

8.7 MOLYBDENUM(0)

8.7.1 Complexes with carbonyl ligands

The geometries of $[M(CO)_6]$ and $M(CO)_5$ fragments (M = Cr, Mo, W) have been optimised by Hartree-Fock and MP2 calculations; for Mo and W the M-CO distances obtained are in excellent agreement with those observed experimentally. The carbonyl dissociation energy of $[Mo(CO)_6]$ was calculated to be 167 ± 8 kJ mol^{-1} [237]. The vapour pressure above mixtures of $[Cr(CO)_6]$ and $[Mo(CO)_6]$ has been measured, and the presence of a species $CrMo(CO)_{12}$ was postulated [238]. The decarbonylation of $[Mo(CO)_6]$ adsorbed on silica has been studied by DRIFTS spectroscopy which allowed the detection of subcarbonyl species which were not observable by normal IR methods [239]. The adsorption of $[Mo(CO)_6]$ on dehydroxylated active zirconia has been studied by IR. Attachment to a Lewis acid site on the surface labilises the CO ligands and reversible decarbonylation occurs on exposure to vacuum [240]. A further study of the substitution reaction of $[Mo(CO)_6]$ encapsulated in Na-Y zeolite with PMe3 to give mainly $[Mo(CO)_5(PMe_3)]$ with small amounts of $[Mo(CO)_4(PMe_3)_2]$ has confirmed that an associative mechanism operates at lower temperatures and a dissociative one at higher temperatures, leading to a two-term rate law [241].

The reaction of [M(CO)6] (M = Cr, Mo, W) with NH₂OH proceeds by oxidation of a CO ligand to CO₂ and coordination of the amine; this mechanism was compared to that known for Me₃NO [242]. The mechanism of the dimerisation of 1,1,2,2-tetrafluoro-1,2-disilacyclobutenes to fluorosilyl trifluorosilylalkenes induced by [Mo(CO)6] has been studied, and some intermediate metallacycles have been isolated [243].

The reaction of $[M_2(CO)_{10}]^{2-}$ (M = Cr, Mo, W) with SnCl₂ afforded $[Cl_2Sn\{M(CO)_5\}_2]^{2-}$, all of which were crystallised as their $[Na(12-C-4)]_2$ salts and structurally characterised [244]. Addition of $[NO][BF_4]$ to $[NEt_4][Mo_2(\mu-H)(CO)_9L]$ (L = PPh₃, Ptol₃ etc.) afforded the complex $[Mo_2(\mu-H)(CO)_8(NO)L]$; similarly $[Mo_2(\mu-H)(CO)_7(NO)L_2]$ [L = PMe₂Ph, P(OMe)₃] and $[Mo_2(\mu-H)(\mu-L_2)(NO)(CO)_7]$ (L₂ = dppm, dppe, etc.) were obtained from suitable anionic precursors. The last of these undergoes an unusual reaction with Ph₃P=NPr to give the isonitrile species $[Mo_2(\mu-H)(\mu-L_2)(CNPr)(NO)(CO)_6]$ [245]. The reaction of $[Mo(CO)_6]$ with OH- under phase transfer conditions gave $[(OC)_3Mo(\mu-OH)_3Mo(CO)_3]^{3-}$; no reaction was observed under a variety of other conditions [246]. However the complex $[(OC)_3Mo(\mu-OPh)_3Mo(CO)_3]^{3-}$ was obtained by reaction of $[Mo(CO)_6]$ with $[NEt_4][OPh]$ and was structurally characterised [247].

The reaction of [PPN]₂[Mo(CO)₃(η -7,9-C₂B₁₀H₁₀Me₂)] with allyl bromide gave [PPN][MoBr(CO)₃(η -7,9-C₂B₁₀H₁₀Me₂)], together with small amounts of the corresponding bromide with a 7,9-C₂B₉H₉Me₂ ligand, formed by ejection of a BH vertex. Protonation of [PPN][Mo(CO)₂(η -allyl)(η -7,9-C₂B₁₀H₁₀Me₂)] gives the first bromide salt under CO, but the second one if CO is absent [248]. Protonation of [NEt₄][Mo(CO)₂(η -allyl)(η -7,8-C₂B₉H₈Me₂-10-OEt)] under CO gave [Mo(CO)₄(η -7,8-C₂B₉H₈Me₂-10-OEt)] which gradually underwent a

polytopal rearrangement to the 2,8-isomer [249]. The reaction of [Mo(CO)₂(η -C₂Me₂)(η -7,8-C₂B₉H₉Me₂)] with CN^tBu gave [Mo(CO)_{4-n}(CN^tBu)_n(η -7,8-C₂B₉H₉Me₂)] where n = 3, 4 [250].

The salt [NEt4][Mo(CO)5(CN)] reacts with R₂BCl [R = CH(SiMe₃)₂] to give the thermally stable product [Mo(CO)5(CNBR₂)] [251]. The complexes [(OC)5M(μ -CN)M'(NH₃)5][OTf]₂ (M = Cr, Mo, W; M' = Ru, Os) have been prepared. They all show a reversible M'(II)/M'(III) couple and an irreversible M(0)/M(I) wave in their cyclic voltammograms, and behave as class II Robin-Day mixed-valence systems [252, 253].

A theoretical study of the substitution reactions of d^6 metal carbonyls [M(CO)₅L], which show a high degree of *cis* stereospecificity, has appeared; although it deals mainly with [Mn(CO)₅Cl], it includes calculations of the optimised geometry of [Mo(CO)₄(NH₃)] as a possible intermediate [254]. Further details on the cyclisation of 1-alkyn-4-ols to 2,3-dihydrofurans induced by photogenerated [Mo(CO)₅(NEt₃)] have appeared; carbene complexes are thought to be involved [255]. Photolysis of [M(CO)₆] (M = Cr, Mo, W) with fumaronitrile afforded [M(CO)₅L] in which the ligand is bonded through one nitrogen atom. In toluene the Mo complex dissociates into L and [Mo(CO)₅(toluene)] in an equilibrium process [256]. A similar photolysis reaction with TCNE gave [Mo(CO)₅(TCNE)], but in this case the ligand is bonded through the C=C bond [257].

The reduction potentials of a range of molybdenum bpy complexes, including $[Mo(CO)_4(bpy)]$, $[Mo(CO)_2(bpy)_2]$ and $[Mo(bpy)_3]$ have been measured and parameterised with an additive ligand contribution parameter [258]. The visible absorption spectra of $[Mo(CO)_4(bpz)]$ (bpz = bipyrazine) and $[Mo(CO)_4(bpy)]$ depend on the solvent, but their emission spectra less so. The compounds have large dipole moments in the ground state compared to the first MLCT excited state, suggesting less Mo-CO backbonding in the excited state [259]. Reduction of 2,2'-bpy with Sn and HCl gave 2-(2'-piperidinyl)pyridine and 1,2,3,6-tetrahydro-2,2'-bpy, both of which form complexes $[Mo(CO)_4L]$ that display solvatochromic behaviour similar to that of the bpy complex [260]. The complexes $[M(CO)_4(terpy)]$ have been made for M = Cr, Mo, W; in solution the terpy ligand is fluxional and oscillates between equivalent didentate bonding modes [261]. Heating the mono- or bis-Mo complexes of 2,3-bis(2-pyridyl)pyrazine, $[\{Mo(CO)_4\}_n(dppz)]$ (n = 1,2) in MeCN produced $[\{Mo(CO)_3(MeCN)\}_n(dppz)]$; the labile MeCN ligands can then be replaced by PPh₃ [262].

The pyrazolylmethane ligand PhCHpz*2 forms a complex [Mo(CO)₄L], as do bis(3,5-dimethyl-4-benzylpyrazolyl)methane and bis(3-phenylpyrazolyl)methane. However the analogous ligand with 3- 1 Bu-pyrazolyl groups was too sterically hindered [263]. Heterocycles with an exocyclic 1,4-diaza-1,3-diene unit form complexes [Mo(CO)₄L] (28) (E = O, S, NPh, NCO₂Et) which resemble the diazabutadiene complexes; the ligands are predominantly σ -donors with a small amount of backbonding [264].

Aldimines RCH=N(CH₂)_nN=CHR and RCH=NCH₂CHMeN=CHR (R = various aryl; n = 3,4,6) react with [Mo(CO)₆] to give compounds of the type cis-[Mo(CO)₄L] and with [Mo(CO)₅(PPh₃)] to give [(Ph₃P)(OC)₄Mo(μ -L)Mo(CO)₄(PPh₃)]. Halogenation of the first type gave [Mo(CO)₃X₂(L)] or [LMoCl₄] [265]. Diazines Y=NN=CHCH=NN=Y and Y=NN=CH-2-

C₅H₄N, where the Y groups are camphor or fenchone, have also been made into complexes of the type $[Mo(CO)_4L]$ and $[Mo(CO)_3(L)(L')]$ (L' = NCMe, PPh₃, AsPh₃) [266]. The X-ray structure of the Schiff's base complex $[Mo(CO)_4(C_5H_4N-2-CH=NCHMePh)]$ has been determined [267].

The Mo(CO)₃ complex of the macrocycle cyclen (1,4,7,10-tetrazacyclododecane) undergoes alkylation with RBr to give the monoalkylated product exclusively, whereas if RI is used, the N(1), N(7) dialkylated macrocycle is formed [268]. Liquid crystalline behaviour has been observed for metal tricarbonyl complexes of triazacyclononane macrocycles functionalised with CH₂C₆H₃-3,4-(OC₁₀H₂₁₎₂ groups [269].

A number of phosphine ligands have been synthesized and characterised as complexes of the type [Mo(CO)₅L], [Mo(CO)₄L₂], and [Mo(CO)₃L₃]. These include 1-phenylphosphirane, PhPCH₂CH₂, and 1-phenylphosphetane, PhPCH₂CH₂CH₂, which were made by reaction of PhPLi₂ with the appropriate dichloroalkane and both structurally characterised as their *fac*-[Mo(CO)₃L₃] complexes [270], as were HOCH₂C(CH₂PPh₂)₃, derived from pentaerythritol [271], and cis,cis-1,3,5-tris(diphenyphosphino)cyclohexane (29) [272]. The reaction of MeC(CH₂Cl)₃ with Ar₂PH in dmso containing aqueous KOH provides a general route to tripod ligands of the type MeC(CH₂PAr₂)₃ (Ar = Ph, C₆H₄-4-¹Bu, naphthyl etc.); some were then made into [Mo(CO)₃L] complexes [273]. The complexes cis-[Mo(CO)₄L₂] and fac-[Mo(CO)₃L₃] were made from adamantylphosphine, PAdH₂ [274].

The phosphine ligand $P(C_6H_4-2-OMe)_3$ reacts with $[Mo(CO)_3(cht)]$ to give $[Mo(CO)_3L]$ in which the ligand bonds through P and two of the OMe groups. On reaction with CO the oxygen coordination can be released, allowing sequential isolation of $[Mo(CO)_4L]$ and $[Mo(CO)_5L]$ [275].

Studies of the dipole moments, electric birefringencies, IR spectra and bond distances in the complexes $[M(CO)_5\{P(OCH_2)CMe\}]$ (M = Cr, Mo, W) provide support for the idea of π -acid behaviour by the cage phosphite ligand [276]. A systematic structural investigation of $[M(CO)_5(AsPh_3)]$, $[M(CO)_5(SbPh_3)]$ (M = Mo, W) and $[W(CO)_5(PPh_3)]$ has been carried out, with trends in bond lengths and conformation of the ligands analysed; all have a very similar propeller conformation [277]. Tri- and tetranuclear complexes have been made by attaching $Mo(CO)_5$ units to each of the phosphorus atoms of the ligands $PhP(CH_2CH_2PPh_2)_2$ and $P(CH_2CH_2PPh_2)_3$ [278]. Similarly four $Mo(CO)_5$ units can be added to the functionalised cyclam macrocycle 1,4,8,11-tetrakis(diphenylphosphinomethyl)-1,4,8,11-tetrazacyclotetradecane [279]. Complexes of dppm monoxide and monosulfide of the type $[Mo(CO)_5L]$ and $[Mo(CO)_4L_2]$ have

been prepared [280]. Elaboration of [Mo(CO)₅(PPh₂Cl)] with lithiated 2,2,5-trimethyl-4H-1,3-dioxin-4-one gave (30), which underwent ring opening with ROH (R = Cy, Me) or PrSH to produce [Mo(CO)₅(PPh₂CH₂COCH₂COER)] (E = O, S) [281].

The X-ray structure of [Li(thf)₃]₂[Mo₂(μ -PPh₂)₂(CO)₈] has been determined; the lithium atoms are coordinated to one carbonyl ligand on each metal [282]. The mononuclear phosphido complex [CpW(CO)₃PPh₂] reacts with [Mo(CO)₄(nbd)] to give the metal-metal bonded species [CpW(CO)₂(μ -PPh₂)Mo(CO)₅] (31), which can be opened up by addition of CO [283]. The complexes [(OC)₄M(μ -PPh₂)(μ -CO)PtH(PPh₃)] (M = Cr, Mo, W) have also been prepared [284]. The pendant phosphines of fac-[ReBr(CO)₃(η ¹-dmpm)₂] have been coordinated to [Mo(CO)₃(cht)] to give [(OC)₃Re(μ -Br)(μ -dmpm)₂Mo(CO)₃] [285].

Gas phase photoelectron spectroscopy has been used to study the effect of the bite angle of cis-phosphine ligands on electron distribution in cis-[Mo(CO)4(PMe3)2], [Mo(CO)4(dmpm)] and [Mo(CO)4(dmpe)]. They all gave simple spectra whereas the analogous W complexes had a complicating spin-orbit perturbation. In fact the results were very similar despite a difference of 15° in the bite angle, accounted for by a twisting in the phosphine ligand [286]. The compound cis-[Mo(CO)4(PCy3)2] is readily prepared and stable, despite the large cone angle (170°) of the ligand; its X-ray structure showed that the principal means of relieving the steric congestion was by long Mo-P bonds [287]. As part of a systematic study of such compounds, the X-ray structures of cis-[Mo(CO)4L2] where $L = P(C_6H_4-4-F)_3$ [288] or $P(OPh)_3$ [289] and where $L_2 = dppf$ [290] have been determined.

The kinetics of the substitution reaction of [Mo(CO)4(cod)] with dppm have been studied; the reaction rate depends on the concentrations of complex, cod, and dppm, and an associative transition state is indicated by the entropy parameters. The breaking of one Mo-alkene bond is proposed to be the rate-determining step [291]. The Raman spectra of $Ph_2P(CH_2)_nPPh_2$ (n = 1-4) have been recorded and the coordination shifts in the complexes [Mo(CO)4L] examined for n = 1 or 2 [292]. The reaction of [Mo(CO)4(nbd)] with $Ph_2P(CH_2)_nPPh_2$ (n = 5 or 6) gave [Mo(CO)4L] containing 8- or 9-membered chelate rings [293]. However when n = 5, the same group have isolated a complex of the type $\{Mo_2(CO)_8(\mu-L)_2\}$ [294]. The reaction of $PhP(=S)(NMeNH_2)_2$ with $PiPr_2Cl$ afforded $PhP(=S)(NMe_2NHPiPr_2)_2$ which coordinated to a Mo(CO)4 unit to form complex (32), which contains an eight-membered chelate ring [295]. Photolysis of cis-

[Mo(CO)₄{Ph₂P(CH₂CH₂O)₄CH₂CH₂PPh₂}], which contains a 17-membered chelate ring, caused isomerisation to the *trans* form [296].

The complexes $[M(CO)_4\{(Ph_2P)_2C=CHR)]$ (M = Mo, W; R = Me, Ph) have been prepared [297]. The pendant phosphine group in $[M(CO)_4\{(Ph_2P)_2CHPPh_2\}]$ (M = Cr, Mo, W) can be coordinated to gold fraginents such as AuX (X = Cl, C₆F₅) and Au(PPh₃)⁺ [298]. The Mo(CO)₄ complex of $[BuP\{P=C(SiMe_3)_2\}_2$ has been structurally characterised [299].

The complex $[Mo(CO)_4(L_2)]$ ($L_2 = bpy$, dppm, dppe) reacts with the cyclic aminophosphine MeOPNMeCH₂CH₂NMe to give fac- $[Mo(CO)_3(L_2)(L)]$. Subsequent abstraction of OMe⁻ with BF₃.OEt₂ gave the cationic species fac- $[Mo(CO)_3(L_2)(PNMeCH_2CH_2NMe)]$, which spontaneously change to the mer-isomers. [300]. The 3-arsolenes RAsCH₂CMe=CMeCH₂ (R = Ph, Me) have been synthesized and used to make the compounds $[Mo(CO)_3(L_2)L]$ where $L_2 = dppm$, dppe [301]. Full details of the excision of the Mo(II) vertex of the tetraphosphoxane cage compound $[(CO)_4Mo\{P(N^iPr_2)O\}_4Mo(CO)_2I_2]$ with NaS₂CNEt₂ and subsequent coordination of the remaining $[Mo(CO)_4\{P(N^iPr_2)O\}_4]$ to a range of other metal fragments have been published [302].

The reaction of $[Mo(CO)(L_2)_2]$, where $L_2 = R_2PCH_2CH_2PR_2$ (R = Et or CH₂Ph) with silanes PhSiH₃ or C₆H₁₃SiH₃ gave η^2 -silane complexes $[Mo(\eta^2-SiH_3R')(L_2)_2]$ (33). The silane ligand is coordinated through one of the Si-H bonds in a manner analogous to the H₂ complexes prepared previously [303]. The compounds $[Mo(N_2)_2(L_2)_2]$ and, by reaction with ethyl acetate, $[Mo(CO)(L_2)_2]$ have been prepared for a range of similar diphosphine ligands (R = CH₂Ar where Ar = Ph, o-, m- and p-tolyl, o-, m-, p-C₆H₄F etc.). Addition of H₂, N₂ or SO₂ gave $[Mo(CO)(L)(L_2)_2]$, including further examples of dihydrogen complexes. Since the analogous complex with R = Et gives a dihydride, the oxidative addition reaction of H₂ is under electronic control and depends on the basicity of the phosphine ligand [304].

A range of phosphorus-nitrogen ligands have been coordinated to Mo carbonyl fragments, sometimes simply through P atoms and sometimes as P.N-donors. The ligands $Ph_2PN^iPrPh(OR)$ (R = tolyl, Mes, 2-pyridyl) and $Ph_2PN^iPrP(OC_6H_4O)$ react with $[Mo(CO)_4(pip)_2]$ to give $[Mo(CO)_4L]$ [305]. The pendant phosphorus atom in $[Mo(CO)_4\{P(OMe)_3\}L]$ where $L = P(Otolyl)(NPh)_2P(Otolyl)$ can be coordinated to additional metal fragments [306].

Reaction of fenchone with hydrazine, followed by pinacolone and then BuLi and PPh₂Cl gave Y=NN=C(¹Bu)CH₂PPh₂ which coordinates as a P,N ligand in its Mo(CO)₄ complex [307]. The ligand 1-(diphenylphosphino)-2-ethoxy 1-(2-pyridyl)ethane, C₅H₄NCH(PPh₂)CH₂OEt reacts with [Mo(CO)₃(cht)] to give the P,N,O-bonded complex [Mo(CO)₃L] initially, but this redistributes to the P,N-bonded [Mo(CO)₄L] [308]. The new ligands (S)-Ph₂POCH₂CH(NMe₂)CH₂CH₂CH₂SMe and (R)-Ph₂POCH₂CH(NMe₂)CH₂SMe, derived from the amino acids methionine and cysteine, have been prepared; they form fac-[Mo(CO)₅L] complexes in which they act as P,N,S-donors [309]. Interaction of 2-vinylpyridine with pyridine -2-thiol gave C₅H₄N-2-SCH₂CH₂-2-C₅H₄N which acts as an N,N,S-chelate in fac-[Mo(CO)₃L] [310].

Complexes of a number of 1,3,2-diazaphosphorinan-4-ones, RPN(Me)C(=O)C₆H₄NMe (R = F, NMe₂ etc.) of the type [Mo(CO)₄L₂] have been made [311], while the similar ligand ClPN(PCl₂)C(=O)C₆H₄NMe coordinates through both P atoms to form [Mo(CO)₄L] [312]. Complexes of the related 1,3,2-oxazaphosphorinanones have also been prepared [313]. The reaction of MeNHNH₂ with RPCl₂ (R = Et, Ph) gave the 6-membered 1,2,4,5-tetraza-3,6-diphosphorinane ring [RPNMeNH]₂, which reacted with [Mo(CO)₄(pip)₂] to give [(pip)(OC)₄Mo(μ -L)Mo(CO)₄(pip)] [314]. The phosphadiazole PhP(=S)NMeC₆H₄NH reacts with PhPCl₂ to give PhP(=S)NMeC₆H₄N(PPhCl) as a mixture of two isomers; it considinates through P and S in its Mo(CO)₄ complex [315].

The phosphazenes gem-N₃P₃Ph₄(pz*)₂ and N₃P₃(OCH₂CH₂NMe)₂(pz*)₂ formed complexes [Mo(CO)₃L] in which they coordinate through one nitrogen of the ring and the two pyrazole nitrogen atoms [316]. The related N₃P₃(NMe₂)₄{NH(CH₂)_nNH} (n = 2,3) gave complexes [Mo(CO)₄L], coordinating through one N of the ring and one N of the diaminoalkane moiety [317].

Solutions of K₃E₇ (E = P, As, Sb) in en react with [Mo(CO)₃(cht)] in the presence of 2,2,2-crypt to give [K(crypt)]₃[Mo(CO)₃(E₇)] (34). The Mo(CO)₃ group is η^4 -bonded to a square face of the E₇ unit, which resembles a norbornadiene ligand [318]. A second group have also reported the [Na(crypt)] salt of the Sb₇ complex, prepared in the same way [319].

The synthesis and X-ray structure of the pyridine-2-thiolate complex [NEt4][Mo(CO)4(pyS)] has been reported [320]. The structure of [NEt4][Mo2(CO)9(μ -pyS)], which has an additional Mo(CO)5 unit coordinated to the sulfur atom, has also been determined [321], as has that of [Mo3(CO)6(μ -pyS)2(μ 3-pyS)2] which is made by the reaction of [Mo(CO)3(MeCN)3] with pySH and PPh3 [322]. The synthesis of the ethyl xanthate species [PPh4][Mo(CO)4(S2COEt)] has been developed as an undergraduate laboratory experiment [323].

Lithiated dimethyl sulfide, LiCH₂SMe, reacts with BF₃.OEt₂ to give [B(CH₂SMe)₄]⁻; this tetrakis(methylthiomethyl)bornte acts as a tridentate ligand on reaction with [Mo(CO)₃(cht)], forming [Mo(CO)₃{B(CH₂SMe)₄}]⁻ which can be protonated at the metal [324]. The complex [Mo(CO)₃([16]-ane-S₄)] was made by treating [Mo(CO)₃(MeCN)₃] with the macrocycle [325]. The compound [Mo(CO)₃(SCH₂CH₂SCH₂CH₂S)]²⁻, prepared from 3-thiapentane-1.5-dithiolate, reacts with substituted 1,2-dibromopropanes by ring closure to give complexes of functionalised

1,4,7-trithiacyclononanes, which can be displaced from the metal by addition of further dithiolate [326]. The X-ray structures of $[(CO)_4Mo(\mu-SPh)_2Fe(\mu-SPh)_2Mo(CO)_4]$ and its two electron reduction product have been determined; the neutral complex has Mo–Fe bonds (2.77Å) whereas these are broken in the dianion (Mo...Fe 3.40Å), and in both cases the trimetallic chain is bent, not linear [327]. The reaction of $[Mo_3(CO)_7(SC_6H_4O)_3]^{2-}$ with FeCl₂ gave $[Mo_2Fe(CO)_4(SC_6H_4O)_3Cl_2]$; the suggested structure has a central $Mo(SC_6H_4O)_3$ unit with a $Mo(CO)_4$ group coordinated to two of its sulfur atoms and FeCl₂ coordinated to the three oxygens [328].

The reaction of [MBr(η -allyl)(CO)₂(MeCN)₂] with S₂CPR₃ (R = Cy, ⁱPr) afforded [MBr(η -allyl)(CO)₂(S₂CPR₃)], which in turn reacted with [M'(CO)₃(MeCN)₃] (M = Mo, W; the EtCN complex was used for W) to give [(OC)₂(η -allyl)M(μ -Br)(μ -S₂CPR₃)M'(CO)₃]; all four combinations were made [329]. Treatment of fac-[ReBr(CO)₃(S₂CPR₃)] with [Mo(CO)₃(MeCN)₃] gave [(OC)₃Re(μ -Br)(μ -S₂CPR₃)Mo(CO)₃] [330]. Further reactions of the anion [(OC)₃Mn(μ -S₂CPR₃)Mo(CO)₃] have been reported. With PPh₂Cl, the initial product is [(OC)₃Mn(μ -S₂CPR₃)(μ -PPh₂)Mo(CO)₃] which on heating rearranges to the compound [(OC)₂Mn(μ -S₂CPR₃)(μ -PPh₂)Mo(CO)₃] in which the coordination of the S₂CPR₃ ligand has changed around. The analogous μ -SePh complex does not rearrange in this way [331].

8.7.2 Complexes with nitrogen and phosphorus donor ligands

The geometries of trans-[Mo(N₂)₂L₄] where L = PH₃ or SH₂ have been optimised by local density functional theory DVX α calculations, which show good agreement with observed bond lengths, N₂ stretching frequencies, and sites of attack by electrophiles. Comparison with Hartree-Fock calculations shows that the current method provides a more accurate model [332].

The kinetics of the reaction of trans-[Mo(N₂)₂(PPh₂Me)₄] with the tripod ligands P(CH₂CH₂PPh₂)₃ and N(CH₂CH₂PPh₂)₃ are complex, involving four consecutive steps. The proposed mechanism is initiated by dissociation of one PPh₂Me ligand, to give an intermediate which then reacts by two parallel pathways [333]. The radiation yields of NH₃ and N₂H₄ and the catalytic efficiency of [Mo(N₂)₂(triphos)(PPh₃)] and [Mo(N₂)₂(dppe)₂] for N₂ reduction in neutral and acid solutions have been studied; the importance of Mo-H bonds in N₂ reduction has been pointed out as a result [334].

The reaction of $[Mo(NO)_2(CN)_4]^{2-}$ with various anilines produced complexes of the type $[Mo(NO)_2(CN)_2L_2].2H_2O$ [335]. A number of Schiff's base ligands derived from 1-phenyl-3-methyl-4-benzoyl-5-pyrazolone and various anilines have been coordinated to $[Mo(NO)_2(acac)_2]$; for didentate ligands HL, these take the form $[Mo(NO)_2(L)_2]$, whereas for tetradentate ones H_2L derived from phenylenediamines, they are $[Mo(NO)_2L]$ [336]. Starting from $[Mo(NO)_2Cl_2]_n$, symmetrical and unsymmetrical pyrazine complexes $[Cl(dppp)(NO)_2M(\mu-pyz)M'(NO)_2(dppp)Cl]^{2+}$ and $[Cl(phen)(NO)_2M(\mu-pyz)M'(dppp)Cl]^{2+}$ (M, M' = Mo, N') were prepared [337]. The coordination of a range of carboxylic acids in complexes of the type $[MoCl_2(NO)_2(HL)_2]_n$ has been explored [338].

8.8 MOLYBDENUM CLUSTERS

8.8.1 Polyoxomolybdates

The following brief discussion deals first with homonuclear species and then with heteropolymolybdates. A book on the many and varied aspects of polyoxometallate chemistry has appeared [339] and reviews have been published on the role of heteropolyanions and heteropolyacids in catalysis [340, 341] and on supramolecular inorganic chemistry involving polyoxometallates [342]. A selection of shorter reviews appeared in a special issue of Molecular Engineering; after an introduction [343], others dealt with the topological analysis of polyoxometallate structures [344], the synthesis of novel heteropoly compounds [345], functionalisation of polyoxomolybdates with nitrosyl groups [346], and polyoxoalkoxide clusters of Mo and V [347].

The clusters Na₂[MMo₃(μ_3 -O)₃(μ -O)(μ -O₂CR)₅(O₂CR)₃]₂ (M = Cr, W; R = Me, Et) can be made by several routes, including reaction of Na[Mo₃O₂(O₂CR)₉] with M(CO)₆, or refluxing [M(CO)₆] with Na₂MoO₄ in the appropriate acid; the structure consists of two {Mo₃O₄}⁴⁺ units which are linked to the two M atoms by oxo and carboxylate bridges [348, 349]. The analogous vanadium complex Na₂[VMo₃O₄(O₂CEt)₈]₂ was also prepared [350]. A similar reaction between [Mo(CO)]₆ and Na₂WO₄ in propionic anhydride gave the trinuclear cluster cation [MoW₂(μ_3 -O)₂(O₂CEt)₆(H₂O)₃], isolated as its [ZnBr₄]²⁻ salt [351].

The thermal analysis of a sample of a commercial molybdate containing [NH₄]₂[Mo₄O₁₃], its β -isomer, and its dihydrate, has been examined [352]. The incorporation of crown ether macrocycles into a pentamolybdodiphosphonate cage compound has been achieved by the reaction of [MoO₄]²- with RPO₃H in the presence of [C(NH₂)₃]⁺, which gave the zwitterionic [C(NH₂)₃]₂[Mo₅(PR)₂O₂₁] (35) where the R groups are CH₂NH⁺(CH₂CH₂)₂O or CH₂NH⁺(CH₂CH₂O)₄CH₂CH₂ [353].

The reaction of [NBu₄]₂[Mo₆O₁₉] with Ph₃P=NPh gave mixtures of monosubstituted [Mo₆O₁₈(NPh)]²⁻ and disubstituted [Mo₆O₁₇(NPh)₂]²⁻; their presence was demonstrated by

⁹⁵Mo and ¹⁴N NMR spectra, and a crystal structure showed that all three compounds could exist in the same crystal [354]. Treatment of the same starting material with RNCO (R = Bu, Cy, C₆H₃-2,6- i Pr₂) gave [Mo₆O₁₈(NR)]²⁻, but for the aryl isocyanate increasing the amount of reagent led to the isolation of [Mo₆O_{19-n}(NR)_n]²⁻ where n = 2, 4 and 5; the X-ray structures of the compounds with n = 2 and 4 were reported [355]. The synthesis and structure of the diazenido-substituted complex [NBu₄]₃[Mo₆O₁₈(N₂C₆H₄-4-NO₂)] has been reported [356]. The compound [NEt₄]₂[H₄Mo₆O₁₉], containing four Mo(V) and two Mo(VI) centres, has been reported as the product of irradiation of MoCl₅ in a dmf /MeOH mixture [357]. The crystal structure of the 3,3'-dimethyl-4,4'-diphenyl-2,2',5,5'-tetrathiafulvalenium salt of [Mo₆O₁₉]²⁻ has been determined [358].

A kinetic study has shown that the rate of epimerisation of D-mannose to D-glucose, catalysed by aqueous ammonium molybdate, is greatly accelerated by the presence of MeCN [359]. The IR and polarised Raman spectra of the 2-aminopyridinium salt of $[Mo_7O_{24}]^{6-}$ have been recorded [360] and the synthesis and structure of $(NH_3)_3[Pd(NH_3)_4]_3[Mo_7O_{24}]$ were reported [361]. The crystal structure of $[^1BuNH_3]_6[Mo_7O_{24}]$. 7H₂O has been published [362]. The synthesis of meso-structured oxide materials from ammonium molybdate involving the use of surfactants as templates gave rise to layered structures whereas tube-like forms were produced from tungstates [363]. A ^{183}W NMR spectroscopic study of the replacement of W(VI) by Mo(VI) in $[W_7O_{24}]^{6-}$ has shown that any or all of the W atoms can be replaced, leading to the identification of at least 19 different mixed-metal species. However in α - $[H_2W_{12}O_{40}]^{6-}$ and $[H_2W_{12}O_{42}]^{10-}$ only a single substitution was observed, at a site furthest away from the centre [364].

The reaction of NEt₃ with MoO₃. $2H_2O$ or ammonium molybdate gave [NHEt₃]4[Mo₈O₂₆]. If sodium molybdate was used, the salt [NHEt₃]3[NaMo₈O₂₆] resulted, and could also be made by treating the octamolybdate with NaCl. A similar potassium species could also be isolated [365]. The chiral amines R*N = (+)-cinchonine, (+)-hydroquinidine and (-)-quinine reacted in the same way to give $[R*NH]_4[Mo₈O₂₆]$ or in the case of coordinating bases, $[R*NH]_4[Mo₈O₂₆(NR*)_2]$. Refluxing these in ethanol with NaCl led to the formation of $[R*NH]_2[Mo₆O₁₉]$ [366]. Mixing MoCl₅, CoCl₂, thiosemicarbazide and dmf under irradiation gave the double salt $[NEt₄][Co(H₂NCSNHNH₂)₃][Mo₈O₂₆].4dmf which was structurally characterised [367]. The crystal structure of <math>[^{i}PrNH₃]_4[\beta-Mo₈O₂₆]$ has also been determined [368], as has that of the photochromic piperidinium salt $[C₅H₁₀NH₂]_4[\beta-Mo₈O₂₆]$ [369].

The electronic and structural relationships between MoO₃ and ions with the Keggin structure such as [Mo₁₂O₄₀]⁸- have been explored [370]. The solid phase reaction of ammonium molybdate, NBu₄Br and NH₂OH.HCl gave [NBu₄]₆[H₃O]₂[Mo₁₃O₄₀]₂; the two Mo₁₃O₄₀ tetraanions have slightly different structures, though both are based on the Keggin structure with a Mo atom in the centre [371].

The reaction of [(Cp*Rh)4Mo4O₁₆].2H₂O with MeSH has given several different products depending on the conditions used. One of these is [Rh₂(μ -SMe)₃Cp*₂]₄[Mo₈O₂₆], in which the octamolybdate displays an intermediate structure described as α - γ or β - γ [372]. The others are the

compounds [{Cp*Rh(μ -SMe)₃MoO₂}₂(μ -O)] (36) and [{Cp*Rh(μ -SMe)₃MoO}₂(μ -O)(μ -E)] (E = O or S) which has a closely-related structure [373, 374].

The reaction of [NBu₄]₂[Mo₂O₇] with [Cp*TiCl₃] in MeCN gave [Cp*TiMo₅O₁₈]³⁻; its monoprotonated form [Cp*TiMo₅O₁₈H]²⁻ was also isolated and its X-ray structure determined as the [NBu₄]⁺ salt [375]. A theoretical study on the bonding of organometallic fragments to polyoxometallates included an analysis of these compounds [376].

The activity of cetylpyridinium salts of $[PMo_{12}O_{40}]^{3-}$ and $[PO_{4}\{MoO(O_{2})_{2}\}_{4}]^{3-}$ in the oxidation of sulfides has been examined. They show the same product selectivity whereas the analogous tungsten species show a dramatic difference in selectivity [377]. A comparison of the spectroscopic properties of $[PO_{4}\{MoO(O_{2})_{2}\}_{4}]^{3-}$ with those of mononuclear peroxo species has been made [378]. The synthesis and structure of $[H_{3}O][Me_{2}NH_{2}]_{5}[P_{2}Mo_{5}O_{23}]$ has been reported [379]. The hydrothermal reaction of MoO_{3} , py, $H_{3}AsO_{4}$ and $H_{2}O$ at $230^{\circ}C$ for 4 d gave the new compound $[pyH]_{4}[(Mo_{4}O_{10})(HAsO_{4})_{4}]$ [380].

A comparison of the thermal behaviour and catalytic activity in methanol oxidation of free and silica-supported [H₃PMo₁₂O₄₀] has been made. The free acid converts methanol to Me₂O below 240°C and at higher temperatures gives formaldehyde. The silica-supported acid formed the unexpected β-MoO₃ phase at 500°C which changes to the α-form at higher temperatures, this accompanying a change from CH₂(OMe)₂ to methyl formate as the product of MeOH oxidation [381]. The thermal behaviour of [H₃PMo₁₂O₄₀].13H₂O has also been examined by XRD and ³¹P NMR spectroscopy [382]. Reduction of Keggin-type structures such as [PMo₁₂O₄₀]³⁻ by one electron causes little change in their IR spectra, whereas a two-electron reduction causes substantial changes [383].

The reaction of $[PMo_{11}O_{39}]^{7-}$, produced by NBu_4OH -induced degradation of the initial Keggin structure, reacts with sources of the $Mo(NO)^{3+}$ fragment to give $[NBu_4]_4[PMo_{12}O_{39}(NO)]$ [384]. The A-type trisubstituted isomer of $[NBu_4]_3[PMo_3W_9O_{40}]$ is deoxygenated with PPh₃ to give a reduced species $[NBu_4]_3[PMo_3W_9O_{39}]$ which contains two Mo(V) centres [385]. The reduction of $[H_3PMo_{12-n}W_nO_{40}]$ (n = 0,3,6,9,11,12) has been studied by EPR methods [386]. The structure of $K_8[P_2Mo_2Co_2W_{18}O_{68}(H_2O)_2][MoO_6].15H_2O$, which consists of two fused Keggin structures, has been determined [387].

The 11-molybdogermanate ion, $[H_4GeMo_{11}O_{39}]^{4-}$, was detected in solution by ion transfer voltammetry and isolated as its $[NBu_4]^+$ salt. Although its IR spectrum is similar to that of α - $[GeMo_{12}O_{40}]^{4-}$, its electrochemistry is completely different [392]. The compounds $K_6[Nd(GeMo_3W_9O_{39})_2]$ and $[H_5GeVMoW_{10}O_{40}]$ have been isolated [393, 394],The synthesis of the gallium derivatives $[H_5GaMo_{12-n}W_nO_{40}]$ (n = 3,6,9) has been described for the first time [395].

The lanthanide hexamolybdotellurates $Ln_2[TeMo_6O_{24}].nH_2O$ where n=21 or 31 have been prepared; the inclusion of extra water molecules stabilises the lattice for larger lanthanides [396]. The thermal decomposition of the Anderson-type compounds $[NH_4]_3[H_6MMo_6O_{24}].7H_2O$ where M=Al, Co or Fe has been studied; MoO_3 and $M_2(MoO_4)_3$ are the main products [397]. The compound with M=Co has been used to grow thin films on a glassy carbon surface by electroreduction [398] and a spectroscopic study of the compound with M=Fe has been carried out [399]; the vibrational spectra and thermal behaviour of $[NH_4]_4[H_6CuMo_6O_{24}]$ have also been studied [400]. The X-ray structures of $[NH_4]_x[\alpha-H_{8-x}PtMo_6O_{24}]$ have been determined for x=4.5, 4 and 3.5. The first and third of these contain the Anderson structure whereas the second has an isomeric arrangement, showing that the protonation plays some part in the geometry [401]. The structure of $K_2[H_6PtMo_6O_{24}].5H_2O$ was also determined [402]. The preparation of the compounds $[NH_4]_4[H_6NiMo_{6-x}W_xO_{24}]$ (x=0,2,3,4,6) has been described [403].

Phosphomolybdic acid catalyses the reduction of VO₂+ to VO²+ in 1M aqueous H₂SO₄. The dominant species in solution are [PVMo₁₁O₄₀]⁴- and [PV₂Mo₁₀O₄₀]⁵-, which lowers the reduction potential of V(V) from 0.8 V in the free state to about 0.55 V when bound in the polyoxoanion [404]. A potentiometric, ³¹P and ⁵¹V NMR study of α-[PV₂Mo₁₀O₄₀]⁵- in 0.6M aqueous NaCl has shown the presence of five positional isomers, which were all identified [405]. The oxidation of various thioethers (acting as model compounds for mustard gas) to the corrresponding sulfoxides in the presence of polyoxoanions, including [H₃PMo₁₂O₄₀] has been examined. Better selectivity for sulfoxide over sulfone was observed for [H₅PV₂Mo₁₀O₄₀] in the case of tht as substrate [406]. The catalytic properties of [H₅PV₂Mo₁₀O₄₀] supported on silica have been studied [407], and the activity of [H₄PVMo₁₁O₄₀] for the oxidation of MeOH and hydrocarbons has been tested [408]. Mixing NH₄[VO₃] with sodium molybdate in 2M HCl followed by addition of morpholine led to the isolation of [Hmorph]₆[Mo₄V₅O₂₇][Cl].H₂O which consists of a hybrid of the decavanadate and octomolybdate structures [409]. The oxidation and coupling of 2,3,6-trimethylphenol by O₂ is catalysed by a phosphomolybdovanadate catalyst

supported on carbon [410]. The synthesis and characterisation of the $[SiVMo_{11}O_{40}]^{5-}$ ion has been reported [411], and the reactions of $[EMMo_{11}O_{39}]^{n-}$ (E = Si, P; M = Co, Ni] with NO under phase transfer conditions have been studied [412]. An improved method for making $[PMMo_{11}O_{40}(H_2O)]^{5-}$ (M = Mn, Co, Ni, Cu, Zn) has been described [413].

The reaction of [NH4]6[Mo7O24], NH4VO3, As2O3, NH4SCN and [NMe4]Cl in a water/dmf mixture with hydrazinium sulfate gave [NMe4]4[As4Mo6V7O39(SO4)].H2O which can be described as an inclusion compound with SO4 trapped in the centre [414]. By similar routes the same group was able to prepare [NMe4]5[As3Mo8V4O40].3H2O, two salts involving the [Mo57V6(NO)6O183(H2O)18]²⁴⁻ anion, and [NH4]12[Mo36(NO)4O108(H2O)16].33H2O. Two of these had been previously reported incorrectly in the literature. The presence of the Mo17 motif was also commented on [415]. From an aqueous HCl solution of sodium molybdate, iron(III) nitrate and NH2OH.IICl, the same authors were able to isolate the salt Na3[NH4]12[Mo57Fe6(NO)6O174(OH)3(H2O)24].76H2O, which contains a giant cluster anion with three such Mo17 units arranged as a doughnut-like core [416, 417]. The structure of the pyrophosphate polyoxometallate [NBu4]4[(P2O7)Mo18O54] has been determined and shows that the POP linkage is constrained into a linear geometry. The compound can be reduced to a green penta-anion and then to a blue hexa-anion [418].

8.8.2 Halide clusters

The crystal structures of [(Mo6Br₈)X₆]²- where X is varied along the series F, Cl, Br and I have been determined as their [NBu₄]+, {PPh₄}+ or [AsPh₄]+ salts. Changing the halide causes a systematic lengthening of the Mo-Mo bonds and a slight compression of the Br₈ cube; the IR and Raman spectra at 10 K show the Mo₆Br₈ vibrations remaining constant whereas those involving X change. The ⁹⁵Mo NMR shift moves to lower field as the electronegativity of X increases [419]. The X-ray structure of [PPh₄]₂[Mo₆Cl₁₄] has also been determined [420]. The complete system of mixed metal clusters [(Mo_{6-n}W_nCl₈)F₆]²- (n = 0-6), ten in all (there are two isomers each for n =2-4), have been prepared as a mixture and analysed by ¹⁹F NMR spectroscopy; the assignments of the 24 signals were confirmed by a ¹⁹F COSY spectrum [421]. The synthesis of [NBu₄]₂[(Mo₆Br₇S)Cl₅(MeCN)] was carried out to judge the effect of a neutral ligand on the Mo₆¹²+ core; its structure is very similar to that of [NEt₄]₃[(Mo₆Br₇S)Cl₆] [422]. The reaction of [Mo₆Cl₁₂] with NaSH and NaOBu in a mixture of BuOH and py gave materials which serve as precursors for the Chevrel phases [Mo₆S₈L₆] where L = py, pip or pyrrollidine [423].

8.8.3 Other clusters, including cubanes

Further details of the synthesis of [MoFe₄S₆(PEt₃)₄Cl] from [MoCl₃(thf)₃], S(SiMe₃)₂ and [FeCl₂(PEt₃)₂] have appeared. The chloride ligand can be replaced by thiolates (SPh, SEt) [424].

Energy localised CNDO calculations have been carried out to investigate whether chalcogenide clusters of the type $[M_3(\mu_3-E)(\mu-E)_3]^{4+}$ (M = Mo, W; E = O, S, Se, Te) can be regarded as pseudo-aromatic because of dp π -bonding around the triangle [425, 426]. The reaction of $[Mo_3S_4(dtp)_4]$ (dtp = S_2PR_2 where R = Et, Pr) with MI₂ (M = Zn, Cd, Hg) in the presence of py gave clusters of formula $[Mo_3S_4(dtp)_3(py)_3][M(py)I_3]$ or in the case of Hg, as the $[HgI_3]^-$ salt [427]. If the reaction is carried out in thf the adduct $[Mo_3S_4(dtp)_4(HgI_2)]$ (37) is formed in which the HgI₂ is bonded to two sulfur atoms; the variable temperature NMR spectra suggest dissociation in solution to $[Mo_3S_4(dtp)_3]^+[HgI_2(dtp)]^-[428]$. The reaction of $[Mo_3S_4(dtp)_4]$.H₂O (R of dtp = OEt) with $[M(CO)_6]$ (M = Mo, W) in EtCO₂H gave the cubane clusters $[Mo_3MS_4(\mu-O_2CEt)_2(dtp)_3(dtpH)]$ [429].

Reaction of [Mo₃S₇Cl₄] with py and PPh₃ gave the molecular cluster [Mo₃S₄Cl₄(py)₅] which was structurally characterised [430], while gamma irradiation of polymeric [Mo₃S₇Br₄] in concentrated HBr caused extrusion of [Mo₃S₇Br₆]²-, identified by structural characterisation of its [H₉O₄][NEt₄] double salt. An unusual aggregation of the anions involving short S.··Br contacts was observed [431]. The reaction of [NEt₄]₂[Mo₃S₇Br₆] with p-HSO₃C₆H₄Me gave the aqua species [Mo₃S₇(H₂O)₆]⁴⁺; the analogous Se cluster was also made. Kinetic studies of the replacement of the H₂O ligands by Cl⁻ show that it is a two stage process, consistent with the two different types of water ligand on each Mo. Desulfurisation with the water-soluble phosphine [P(C₆H₄SO₃)₃]³- gave [Mo₃S₄(H₂O)₉]⁴⁺ [432]. The complex [Mo₃S₇(dtc)₃][I].S_{8.2}CH₂Cl₂ (dtc = S₂CNC₄H₈) has been prepared by a solid state reaction and structurally characterised [433], and the synthesis of [NEt₄]₂[Mo₃S₇(tdt)₃] and [NEt₄]₂[Mo₃S₃O₂(tdt)₃] where tdt = tolene dithiolate, -[SC₆H₃MeS]⁻ has been reported [434]. The double cluster Cs₄[Mo₃(µ₃-S)(S₂)₆][Mo₃(µ₃-S)(S₂)₅(S₄)] has been made from Mo powder, K₂S₅ and CsCl solution at 150°C for 72 hours; one of the clusters has a normal Mo₃S₁₃ structure, but in the other, one of the terminal S₂ groups is replaced by an S₄ unit [435].

A number of papers have appeared on the use of $[MoS_4]^{2-}$ and $[MoSe_4]^{2-}$ in reactions with coinage metal compounds to form cubane clusters, especially in the solid state; several review articles deal with synthetic methods [436, 437] and cluster self-assembly [438, 439]. The synthesis of $[MoS_4Cu_6X_4(py)_4]_n$ (X = Br, I) from $[NH_4]_2[MoS_4]$, CuX and NBu_4X in the solid state followed by treatment with py has been reported; the structure is linked into a polymer by CuXCu bridges [440]. The cluster $[NEt_4]_4[\{Mo(=O)Cu_3S_3(Br)(I)(\mu-I)\}_2]$ was obtained from $[MoO_2S_2]^{2-}$, CuI and NEt_4Br ; it consists of two nest-shaped incomplete cubane fragments linked through a $Cu(\mu-I)_2Cu$ bridge [441]. The reaction of $[NH_4]_2[MoOS_3]$ with $[Cu\{S_2P(OEt)_2\}(PPh_3)]$ in dmf gave $[Mo(=O)Cu_3S_3\{S_2P(OEt)_2\}(PPh_3)_3]$ [442]. The mixed-metal species $[MS_4Cu_3(PPh_3)_3Cl]$ where $M = Mo_0.42W_0.56$ was made by solid phase synthesis [443]. Starting from $[MoS_4]^{2-}$, $CuCl_2$ and a large cation such as $[PPh_4]^+$ or $[NBu_4]^+$, compounds of the formula $[C][CuMoS_4]$ were made; they are presumably polymeric in structure [444].

The cubane clusters [NBu₄]₃[Mo(=S)Ag₃(Br)S₃X₃] have been made by a solid state reaction between [NH₄]₂[MoS₄], AgX, and NBu₄Br, and their non-linear optical properties investigated [445]. Analogous reaction starting from [MoOS₃]² also gave the appropriate clusters [446]. The reaction of [PPh₄]₂[MoSe₄] with [Ag(PPh₃)I] in CH₂Cl₂ and MeCN gave the cubane [Mo(=Se)Ag₃(I)Se₃(PPh₃)₃]; the W analogue was also made [447]. The X-ray structure of [Mo(=S)Ag₃S₃(S₂P(OEt)₂)(PPh₃)₃] has been determined [448]. The reaction of [NMe₄]₂[Mo₂S₄(tdt)₂] (tdt = toluene dithiolate) with [Ag(NO₃)(PPh₃)] or [Cu{S₂P(OEt)₂}(PPh₃)] gave [Mo₂M₂S₄(tdt)₂(PPh₃)₂] [449].

The double cubanes [NEt4]4[{MoFe}_3S_4Cl}_3(\mu-SCHRCOO)}2] (38) (R = H, Me, CH2CO2H) have been prepared by reaction of [MoFe}_3S_4Cl}_3(OC_6Cl_4O)(MeCN)]^2- with the appropriate acid; the X-ray structure of the thiolactate (R = Me) was determined. These compounds will reduce N2H4 to NH3 in the presence of CoCp2 and lutidine.HCl to provide electrons and protons respectively; this probably involves breakdown to a single cubane [450]. The reaction of [MoFe}_3S_4Cl_4(ox)]^3- with NEt4CN gave [MoFe}_3S_4Cl_3(CN)(ox)]^3-, but if only 0.5 equivalents is used, the double cubane [{MoFe}_3S_4Cl_2\}_2(\mu-CN)(\mu-S)]^5- results [451]. The conversion of [Fe(dmf)6][Cl2Fe(μ -S)2Mo(μ -S)2FeCl2] to cubanes and double cubanes on reaction with dtc- or SPh- has been described [452].

The incomplete cubane [Mo₃S₄(H₂O)₉]⁴⁺ has been used to prepare a range of heterometallic cubane clusters. Full details of its reaction with Pd black to give [PdMo₃S₄(H₂O)₉Cl]³⁺ have appeared. In the presence of OTs⁻ this can be crystallised as the double cubane [Pd₂Mo₆S₈(H₂O)₁₈]⁸⁺. The preparation of [PdMo₃S₄(tacn)₃Cl]³⁺ and the subsequent displacement of its chloride ligand by CO, ¹BuNC and alkenes were also described; a further unusual feature is that this cluster catalyses the addition of alcohols to alkynes with high selectivity [453]. Addition of Cu metal to [Mo₃S₄(H₂O)₉]⁴⁺ gave [Mo₃CuS₄(H₂O)₁₀]⁴⁺ whereas the new oxidised form [Mo₃CuS₄(H₂O)₁₀]⁵⁺ was obtained from Cu⁺ or solid CuCl. The EPR spectrum of the 4+ cubc shows the unpaired electron interacting with one Cu atom, and it therefore behaves in solution as a single cubane even though it previously crystallised out as a double cubane [454, 455]. Reaction of [Mo₃OS₃(H₂O)₉]⁴⁺ with indium metal gave [InMo₆O₂S₆(H₂O)₁₈]⁸⁺ which was structurally characterised as its tosylate salt [456].

The reaction of $[Mo_3S_4(H_2O)_9]^{4+}$ with $[Cr(H_2O)_6]^{2+}$ gave $[Mo_3CrS_4(H_2O)_{12}]^{4+}$; the Cr(II) centre is labile and undergoes substitution of H₂O by NCS⁻ by a conjugate base mechanism, unlike the analogous Mo₄ cluster [457]. The rates of oxidation of the double cubane $[Co_2Mo_6S_8(H_2O)_{18}]^{8+}$ by $[Fe(H_2O)_6]^{3+}$ and $[Co(dipic)_2]^{-}$ have been measured; the iron shows a two term rate law indicative of both outer sphere reaction of $[Fe(H_2O)_6]^{3+}$ and inner sphere reaction of its conjugate base $[Fe(H_2O)_5(OH)]^{2+}$ [458]. The reduction of $[Mo_4S_4(H_2O)_{12}]^{5+}$ to the corresponding 4+ state has been examined for a range of one-electron reducing agents such as Ti(III), Cr(II), Eu(II), V(II), $[Ru(NH_3)_6]^{2+}$, and Co(II) among others. The self exchange rate for the two clusters was also calculated [459].

The reaction of $[WS_4]^{2-}$ with $[Mo_2O_2S_2(cys)_2]^{2-}$ gave a mixture of clusters which was separated chromatographically into $[MoW_2S_4(H_2O)_9]^{4+}$ and $[Mo_2WS_4(H_2O)_9]^{4+}$, which were both crystallised as the tosylate salts and as $Na_2[M_3S_4(Hnta)_3]$; a statistical disorder of Mo and W was present in all four X-ray structures. Trends were observed in the IR spectra with the bands between 550-400 cm⁻¹ shifting to lower wavenumber on going from Mo₃ to W₃ clusters [460].

REFERENCES

- 1. M.J. Morris, Coord. Chem. Rev., 138 (1995) 121.
- 2. M.J. Morris, Coord. Chem. Rev., 146 Part 1 (1995) 43.
- 3. R.R. Eady and G.J. Leigh, J. Chem. Soc., Dalton Trans., (1994) 2739.
- 4. G.J. Leigh, New J. Chem., 18 (1994) 157.
- 5. J.H. Enemark and C.G. Young, Adv. Inorg. Chem., 40 (1994) 1.
- 6. E.I. Stiefel, D. Coucouvanis and W.E. Newton, Eds., Molybdenum Enzymes, Cofactors and Model Systems, ACS Symp. Ser., 535 (1993).
- 7. M.H. Dickman and M.T. Pope, Chem. Rev., 94 (1994) 569.
- 8. F.A. Cotton, J. Cluster Sci., 5 (1994) 3.
- 9. D.E. Wigley, Prog. Inorg. Chem., 42 (1994) 239.
- 10. J.G. Leipoldt, S.S. Basson and A. Roodt, Adv. Inorg. Chem., 40 (1994) 241.
- 11. J.R. Dilworth and J. Hu, Adv. Inorg. Chem., 40 (1994) 411.
- 12. M. Putala and D.A. Lemenovskii, Russian Chem. Rev., 63 (1994) 197; Usp. Khim., 63 (1994) 207; Chem. Abstr., 122 (1995) 149945g.
- 13. M.G. Kanatzidis and S.-P. Huang, Coord. Chem. Rev., 130 (1994) 509.

- 14. J. Barker and M. Kilner, Coord. Chem. Rev., 133 (1994) 219.
- 15. P.H. Rieger, Coord. Chem. Rev., 135/136 (1994) 203.
- 16. J.M. Zaleski, C. Turro, R.D. Mussell and D.G. Nocera, Coord. Chem. Rev., 132 (1994) 249.
- 17. G.J. Kubas, Acc. Chem. Res., 27 (1994) 183.
- 18. J. Belgacem, J. Kress and J.A. Osborn, J. Mol. Catal., 86 (1994) 267.
- 19. W. Adam and M.J. Richter, Acc. Chem. Res., 27 (1994) 57.
- 20. V.C. Gibson, J. Chem. Soc., Dalton Trans., (1994) 1607.
- 21. V.C. Gibson, Angew. Chem., Int. Ed. Engl., 33 (1994) 1565.
- 22. E.R. Braithwaite and J. Haber, Eds. Molybdenum: An Outline of its Chemistry and Uses (Studies in Inorganic Chemistry, Volume 19), Elsevier, Amsterdam, 1994.
- 23. Z.G. Karov, Solubility and Properties of Compounds of Molybdenum and Tungsten: Handbook, Novosibirsk, 1993; Chem. Abstr., 121 (1994) 287531z.
- 24. D.M. Nixon, Coord. Chem. Rev., 134 (1994) 1.
- 25. E.H. Wong, J. Organomet. Chem., 477 (1994) 45.
- 26. S. Giese and K. Seppelt, Angew. Chem., Int. Ed. Engl., 33 (1994) 461.
- 27. W.Y. Lee, T.M. Besmann and M.W. Stott, J. Mater. Res., 9 (1994) 1474.
- 28. A. Neuhaus, A. Veldkamp and G. Frenking, *Inorg. Chem.*, 33 (1994) 5278.
- W.A. Herrmann, S. Bogdanovic, R. Poli and T. Priermeier, J. Am. Chem. Soc., 116 (1994) 4989.
- 30. R.T. Boere, V. Klassen and K.H. Moock, *Phosphorus Sulfur Silicon Relat. Elem.*, 93/94 (1994) 249; *Chem Abstr.*, 122 (1995) 199440j.
- 31. A. Bell, W. Clegg, P.W. Dyer, M.R.J. Elsegood, V.C. Gibson and E.L. Marshall, J. Chem. Soc., Chem. Commun., (1994) 2247.
- 32. A. Bell, W. Clegg, P.W. Dyer, M.R.J. Elsegood, V.C. Gibson and E.L. Marshall, J. Chem. Soc., Chem. Commun., (1994) 2547.
- 33. J. Sundermeyer, J. Putterlik, M. Foth, J.S. Field and N. Ramesar, Chem. Ber., 127 (1994) 1201.
- 34. J. Sundermeyer, D. Runge and J.S. Field, Angew. Chem., Int. Ed. Engl., 33 (1994) 678.
- 35. U. Radius, J. Sundermeyer and H. Pritzkow, Chem. Ber., 127 (1994) 1827.
- 36. H.-T. Chiu, G.-B. Chang, W.-Y. Ho, S.-H. Chuang, G.-H. Lee and S.-M. Peng, J. Chin. Chem. Soc., 41 (1994) 755; Chem. Abstr., 122 (1995) 95091e.
- 37. H.-T. Chiu, W.-Y. Ho and S.-H. Chuang, J. Mater. Res., 9 (1994) 1622; Chem. Abstr., 121 (1994) 63653c.
- 38. M.L.H. Green, P.C. Konidaris and P. Mountford, J. Chem. Soc., Dalton Trans., (1994) 2975.
- 39. A.A. Danopoulos, G. Wilkinson, T.K.N. Sweet and M.B. Hursthouse, *Polyhedron*, 13 (1994) 2899.
- 40. V.C. Gibson, C. Redshaw, W. Clegg and M.R.J. Elsegood, J. Chem. Soc., Chem. Commun., (1994) 2635.
- 41. J. Takacs and R.G. Cavell, Inorg. Chem., 33 (1994) 2635.
- 42. P.D. Lyne and D.M.P. Mingos, J. Organomet. Chem., 478 (1994) 141.
- 43. P. Roman, A. San José, A. Luque, J.M. Gutierrez-Zorrilla and M. Martinez-Ripoll, Acta Crystallogr., 50C (1994) 1189.
- 44. M.M. Caldeira, M.L. Ramos, V.M.S. Gil, H. van Bekkum and J.A. Peters, *Inorg. Chim. Acta*, 221 (1994) 69.
- 45. M.L. Ramos, M.M. Caldeira, V.M.S. Gil, H. van Bekkum and J.A. Peters, *Polyhedron*, 13 (1994) 1825.
- 46. S. Stojkovski, B.D. James, R. Payne and R.J. Magee, J. Inorg. Biochem., 54 (1994) 33.
- 47. J.J. Cruywagen, J.B.B. Heyns and E.A. Rohwer, J. Chem. Soc., Dalton Trans., (1994) 45.
- 48. D. De Barros, A.S. Sall, O. Gueye and L. Diop, Bull. Chem. Soc. Ethiop., 7 (1993) 113; Chem. Abstr., 121 (1994) 291269n.
- 49. R. Dass and J.R. Mehta, Indian J. Chem., 33A (1994) 438.
- 50. A. Hrdlicka, Solv. Extract. Ion. Exch., 12 (1994) 585.

- 51. R. Dass and J.R. Mehta, Bull. Chem. Soc. Jpn., 67 (1994) 999.
- 52. R.J.R. Mehta, Fresenius J. Anal. Chem., 349 (1994) 520.
- 53. R. Dass and J.R. Mehia, Bull. Chem. Soc. Jpn., 67 (1994) 2103.
- 54. H.-J. Gosink, H.W. Roesky, H.-G. Schmidt, M. Noltemeyer, E. Irmer and R. Herbst-Irmer, Organometaliics, 13 (1994) 3420.
- 55. J. Glerup, A. Hazell, K. Michelsen and H. Weihe, Acta Chem. Scand., 48 (1994) 618.
- 56. K.M. Thompson, W.P. Griffith and M. Spiro, J. Chem. Soc., Faraday Trans. II, 90 (1994) 1105.
- 57. G.E. Meister and A. Butler, *Inorg. Chem.*, 33 (1994) 3269.
- 58. M.S. Reynolds, S.J. Morandi, J.W. Raebiger, S.P. Melican and S.P.E. Smith, *Inorg. Chem.*, 33 (1994) 4977.
- 59. J.O. Dziegielewski and R. Hassa, *Pol. J. Chem.*, 67 (1993) 403; *Chem. Abstr.*, 121 (1994) 220248u.
- 60. D.G. Bray and R.C. Thompson, *Inorg. Chem.*, 33 (1994) 905.
- 61. M.M. Miller and D.C. Sherrington, J. Chem. Soc., Chem. Commun., (1994) 55.
- 62. M.M. Miller, D.C. Sherrington and S. Simpson, J. Chem. Soc., Perkin Trans. 2, (1994) 2091.
- 63. M.J. Filatov, K.V. Shalyaev and E.P. Talsi, J. Mol. Catal., 87 (1994) L5.
- 64. W.P. Griffith, A.M.Z. Slawin, K.M. Thompson and D.J. Williams, J. Chem. Soc., Chem. Commun., (1994) 569.
- 65. P. Martin-Zarza, P. Gili, V. Rodriguez-Romero, C. Ruiz-Perez and X. Solans, *Inorg. Chim. Acta*, 223 (1994) 173.
- 66. A.P. Timosheva, O.V. Tsepaeva, E.K. Kazakova, S.G. Vul'fson, G.A. Bakaleinik, N.D. Chichirova and Y.I. Sal'nikov, Zh. Obshch. Khim., 64 (1994) 892; Chem. Abstr., 122 (1995) 203839r.
- 67. A.P. Timosheva, O.V. Tsepaeva, E.K. Kazakova, S.G. Vul'fson, N.D. Chichirova and Y.I. Sal'nikov, *Zh. Obshch. Khim.*, 64 (1994) 896; *Chem. Abstr.*, 122 (1995) 279594c.
- 68. W.R. Thiel, M. Angstl and T. Priermeier, Chem. Ber., 127 (1994) 2373.
- 69. S. Bhattacharjee and R. Bhattacharyya, *Indian J. Chem.*, 33A (1994) 10; *Chem. Abstr.*, 120 (1994) 207314x.
- 70. T.-J. Won, B.M. Sudam and R.C. Thompson, *Inorg. Chem.*, 33 (1994) 3804.
- 71. M.S. Islam, M.N. Islam and M.M. Uddin, *Indian J. Chem.*, 33A (1994) 1028; *Chem. Abstr.*, 122 (1995) 150101k.
- 72. S. Campestrini and F. Di Furia, Tetrahedron, 50 (1994) 5119.
- 73. W. Adam and M. Sauter, Tetrahedron, 50 (1994) 8393.
- 74. L. Csanyi, Kem. Kozl., 79 (1994) 51; Chem. Abstr., 122 (1995) 171197m.
- 75. M.E. Brown, T.T. Bhengu and D.K. Sanyal, Thermochim. Acta, 242 (1994) 141.
- 76. R.S. Srivastava and K.M. Nicholas, J. Org. Chem., 59 (1994) 5365.
- 77. A.G. Serrette and T.M. Swager, Angew. Chem., Int. Ed. Engl., 33 (1994) 2342.
- 78. H. Arzoumanian, R. Lopez and G. Agrifoglio, Inorg. Chem., 33 (1994) 3177.
- 79. B. Kamenar, M. Cindric and N. Strukan, Acta Crystallogr., 50C (1994) 1396.
- 80. R.N. Singh and D.K. Padma, Synth. React. Inorg. Met.-Org. Chem., 24 (1994) 1063.
- 81. J.H. Reibenspies, K. Klausmeyer and D. Darensbourg, Z. Kristallogr., 209 (1994) 761.
- 82. M. Albrecht, S.J. Franklin and K.N. Raymond, Inorg. Chem., 33 (1994) 5785.
- 83. A. Cervilla, A. Domenech, E. Llopis, F. Vicente and R. Tamarit, *Inorg. Chim. Acta*, 221 (1994) 117.
- 84. A. Cervilla, E. Llopis, A. Ribera, A. Corma, V. Fornés and F. Rey, J. Chem. Soc., Dalton Trans., (1994) 2953.
- 85. A. Cervilla, A. Corma, V. Fornés, E. Llopis, P. Palanca, F. Rey and A. Ribera, *J. Am. Chem. Soc.*, 116 (1994) 1595.
- 86. P. Barbaro, C. Bianchini, G. Scapacci, D. Masi and P. Zanello, *Inorg. Chem.*, 33 (1994) 3180.
- 87. P.R. Traill, A.M. Bond and A.G. Wedd, *Inorg. Chem.*, 33 (1994) 5754.

- 88. F.J. Arnaiz, R. Aguado, J. Sanz-Aparicio and M. Martinez-Ripoll, *Polyhedron*, 13 (1994) 2745.
- 89. F.J. Arnaiz, R. Aguado and J.M. Martinez de Ilarduya, Polyhedron, 13 (1994) 3257.
- 90. K. Dreisch, C. Persson and C. Andersson, J. Chem. Res., (S), (1994) 218; Chem. Abstr., 121 (1994) 270240f.
- 91. V.L. Abramenko, A.D. Garnovskii and Y.V. Abramenko, *Koord. Khim.*, 20 (1994) 39; *Chem. Abstr.*, 121 (1994) 169013j.
- 92. R.N. Pandey, A.N. Sahay, P. Sharma, S. Kumar and A.K. Pathak, *Asian J. Chem.*, 6 (1994) 747; Chem. Abstr., 122 (1995) 121726n.
- 93. B. Fischer, A. Schäfer, R. Bosshard, M. Hesse and M. Vircentini, *Pteridines*, 4 (1993) 206; *Chem. Abstr.*, 121 (1994) 49018t.
- 94. A. Syamal and M.M. Singh, Reactive Polymers, 24 (1994) 27; Chem. Abstr., 122 (1995) 162191c.
- 95. H.J. Kim and B.K. Koo, Bull. Korean Chem. Soc., 15 (1994) 766; Chem. Abstr., 122 (1995) 44924w.
- 96. H.X. Liu, X.M. Zhang and X. Wang, Polyhedron, 13 (1994) 441.
- 97. X. Wang, X.M. Zhang and H.X. Liu, J. Coord. Chem., 33 (1994) 223; Chem. Abstr., 122 (1995) 44929b.
- 98. X. Wang, X.M. Zhang and H.X. Liu, Polyhedron, 13 (1994) 2611.
- 99. X. Wang, X.M. Zhang and H.X. Liu, Acta Crystallogr., 50C (1994) 1878.
- 100. A.B. Ilyukhin, V.L. Abramenko and V.S. Sergienko, Koord. Khim., 20 (1994) 653; Chem. Abstr., 121 (1994) 314524h.
- 101. R.N. Pandey, S. Singh and A.K. Sinha, Asian J. Chem., 6 (1994) 252; Chem. Abstr., 120 (1994) 337724s.
- 102. A.N. Papadopoulos, A.G. Hatzidimitricu, A. Gourdon and D.P. Kessiloglou, *Inorg. Chem.*, 33 (1994) 2073.
- 103. C. Bustos, C. Manzur, D. Carrillo, F. Robert and P. Gouzerh, *Inorg. Chem.*, 33 (1994) 1427.
- 104. C. Bustos, C. Manzur, D. Carrillo, F. Robert and P. Gouzerh, *Inorg. Chem.*, 33 (1994)
- 105. A.C. Stergiou, S. Bladenopoulou and C. Tsiamis, Inorg. Chim. Acta, 217 (1994) 61.
- 106. S.P. Lin, M.A. Khan and K.M. Nicholas, J. Chem. Soc., Chem. Commun., (1994) 2425.
- 107. E. Uhlemann, W. Banβe, E. Ludwig, U. Schilde, F. Weller and A. Lehmann, Z. Anorg. Allg. Chem., 620 (1994) 357.
- 108. E. Uhlemann, E. Ludwig, W. Banße and F. Weller, Z. Anorg. Allg. Chem., 620 (1994) 955.
- 109. A. Proust, P. Gouzerh and F. Robert, J. Chem. Soc., Dalton Trans., (1994) 819.
- 110. A. Proust, P. Gouzerh and F. Robert, J. Chem. Soc., Dalton Trans., (1994) 825.
- 111. M.V. Rao and K. Macfarlane, Tetrahedron Lett., 35 (1994) 6741.
- 112. B. Zhuang, P. Yu, L. Huang, L. He and J. Lu, *Polyhedron*, 13 (1994) 125.
- 113. G. Sánchez, F. Momblona, G. Garcia, G. López, E. Pinilla and A. Monge, J. Chem. Soc., Dalton Trans., (1994) 2271.
- 114. R.J. Salm and J.A. Ibers, Inorg. Chem., 33 (1994) 4216.
- 115. C.G. Young, X.F. Yan, B.L. Fox and E.R.T. Tiekink, J. Chem. Soc., Chem. Commun., (1994) 2579.
- 116. C.D. Garner, L. McGhee, A. Steel and J.M. Winfield, J. Fluorine Chem., 69 (1994) 73.
- 117. R.J.M. Konings and A.S. Booij, Vibr. Spectrosc., 6 (1994) 345.
- 118. T. Kauffmann, M. Enk, P. Fiegenbaum, U. Hansmersmann, W. Kaschube, M. Papenberg, E. Toliopoulous and S. Welke, *Chem. Ber.*, 127 (1994) 127.
- 119. Y.-S. Gal, J. Chem. Soc., Chem. Commun., (1994) 327.
- 120. J. Srogl, A. Gogoll and P. Kocovsky, J. Org. Chem., 59 (1994) 2246.
- 121. N.K. Ashurova, K.G. Yakubov and A.Y. Tsivadze, Koord. Khim., 20 (1994) 435; Chem. Abstr., 121 (1994) 147716p.
- 122. L.K. Minacheva, V.S. Sergienko, N.K. Ashurova, V.G. Sakharova and V.V. Minin, Zh. Neorg. Khim., 39 (1994) 1473; Chem. Abstr., 122 (1995) 70675k.

- 123. S.S. Mandal, P.C. Ghorai, T.K.R. Chaudhuri and H.K. Saha, J. Indian Chem. Soc., 70 (1993) 611; Chem. Abstr., 122 (1995) 70513f.
- 124. N.M. Salunke, V.K. Revankar and V.B. Mihale, Transition Met. Chem., 19 (1994) 53; Chem. Abstr., 121 (1994) 48971m.
- 125. D.M. Sabel and A.A. Gewirth, Inorg. Chem., 33 (1994) 148.
- 126. M.D. Carducci, C. Brown, E.I. Solomon and J.H. Enemark, J. Am. Chem. Soc., 116 (1994) 11856.
- 127. J.C. Kim, W.S. Rees, Jr. and V.L. Goedken, Inorg. Chem., 33 (1994) 3191.
- 128. G. Ferraudi, T. Nyokong, M. Feliz, M. Perkovic and D.P. Rillema, *Inorg. Chim. Acta*, 215 (1994) 27.
- 129. T. Nyokong, Polyhedron, 13 (1994) 215.
- 130. D. Collison, D.R. Eardley, F.E. Mabbs, K. Rigby, M.A. Bruck, J.H. Enemark and P.A. Wexler, J. Chem. Soc., Dalton Trans., (1994) 1003.
- 131. I.K. Dhawan, A. Pacheco and J.H. Enemark, J. Am. Chem. Soc., 116 (1994) 7911.
- 132. Z. Xiao, J.H. Enemark, A.G. Wedd and C.G. Young, *Inorg. Chem.*, 33 (1994) 3438.
- 133. G.M. Olson and F.A. Schultz, *Inorg. Chim. Acta*, 225 (1994) 1.
- 134. M.J. LaBarre, A. Pacheco and J.H. Enemark, *Inorg. Chim. Acta*, 226 (1994) 259.
- 135. P. Basu, A.M. Raitsimring, M.J. LaBarre, I.K. Dhawan, J.L. Weibrecht and J.H. Enemark, J. Am. Chem. Soc., 116 (1994) 7166.
- 136. Z. Xiao, R.W. Gable, A.G. Wedd and C.G. Young, J. Chem. Soc., Chem. Commun., (1994) 1295.
- 137. G. Peng, J. Nichols, E.A. McCullough, Jr. and J.T. Spence, Inorg. Chem., 33 (1994) 2857.
- 138. Y. Du, A.L. Rheingold and E.A. Maatta, *Inorg. Chem.*, 33 (1994) 6415.
- 139. K. Yokoi, I. Watanabe and S. Ikeda, Polyhedron, 13 (1994) 1083.
- 140. R. Dass and J.R. Mehta, Mikrochimica Acta, 113 (1994) 37.
- 141. A.N. Startsev, O.V. Klimov, S.A. Shkuropat, M.A. Fedotov, S.P. Degtyarev and D.I. Kochubey, *Polyhedron*, 13 (1994) 505.
- 142. K.-L. Tang, H.-H. Ni, X.-L. Jin and Y.-Q. Tang, Jiegou Huaxue, 13 (1994) 300; Chem. Abstr., 122 (1995) 44826r.
- 143. D.O. Martire, L.S. Villata and A.L. Capparelli, Polyhedron, 13 (1994) 1411.
- 144. C. Limberg, S. Parsons, A.J. Downs and D.J. Watkin, J. Chem. Soc., Dalton Trans., (1994) 1169.
- 145. C. Limberg, S. Parsons and A.J. Downs, J. Chem. Soc., Chem. Commun., (1994) 497.
- 146. H.S. Yadav, E.M. Armstrong, R.L. Beddoes, D. Collison and C.D. Garner, J. Chem. Soc., Chem. Commun., (1994) 605.
- 147. S.S. Kim, K.H. Chjo, Y.K. Choi and B.G. Jeong, J. Korean Chem. Soc., 38 (1994) 160; Chem. Abstr., 120 (1994) 288571d.
- 148. A. Cervilla, E. Llopis, J.A. Ramírez, A. Doménech, P. Palanca, M.T. Picher, C.A. Ghilardi and A. Orlandini, J. Chem. Soc., Dalton Trans., (1994) 175.
- 149. M.A. Halcrow, J.C. Huffman and G. Christou, Inorg. Chem., 33 (1994) 3639.
- 150. C.G. Young, T.O. Kocaba, X.F. Yan, E.R.T. Tiekink, L. Wei, H.H. Murray III, C.L. Coyle and E.I. Stiefel, *Inorg. Chem.*, 33 (1994) 6252.
- 151. C.T. Sun, Y.B. Zhu, Q.H. Fu, X.X. Liu and S.Z. Yi, Chin. Chem. Lett., 5 (1994) 617; Chem. Abstr., 122 (1995) 70523j.
- 152. C. Sun, Y. Zhu, X. Liu, S. Yi, L. Li and X. Zheng, Chem. Res. Chin. Univ., 10 (1994) 236; Chem. Abstr., 122 (1995) 176915d.
- 153. B. Zheng, J. Huang, H. Zhuang and J. Lu, Jiegou Huaxue, 12 (1993) 359; Chem. Abstr., 121 (1994) 25459m.
- 154. K. Unoura, Y. Fukase, Y. Sato, N. Chida and H. Ogino, *Bull. Chem. Soc. Jpn.*, 67 (1994) 3122.
- 155. Z. Chen, C. Liu and J. Lu, J. Cluster Sci., 5 (1994) 303; Chem. Abstr., 121 (1994) 214057q.
- 156. A.S.A. Zidan, Synth. React. Inorg. Met.-Org. Chem., 24 (1994) 277; Chem. Abstr., 121 (1994) 48986v.

- 157. S.O. Oh, E.Y. Lyou and Y.C. Park, J. Korean Chem. Soc., 38 (1994) 101; Chem. Abstr., 120 (1994) 314289a.
- 158. Y. Du, A.L. Rheingold and E.A. Maatta, J. Chem. Soc., Chem. Commun., (1994) 2163.
- 159. D.L. Hughes, J.D. Lane, R.L. Richards and C. Shortman, J. Chem. Soc., Dalton Trans., (1994) 621.
- 160. R. Billing and D.A. Khoshtariya, Inorg. Chem., 33 (1994) 4038.
- A. Dutta, M. Ali, S. Gangopadhyay and P. Banerjee, Proc. Indian Acad. Sci., Chem. Sci., 106 (1994) 881; Chem. Abstr., 121 (1994) 287353t.
- 162. Z.-W. Li, A. Yeh and H. Taube, Inorg. Chem., 33 (1994) 2874.
- 163. W.M. Laidlaw and R.G. Denning, Inorg. Chim. Acta, 219 (1994) 121.
- 164. A. Roodt, J.G. Leipoldt, L. Helm and A.E. Merbach, Inorg. Chem., 33 (1994) 140.
- 165. L.M. Berreau, J.A. Hays, V.G. Young, Jr. and L.K. Woo, Inorg. Chem., 33 (1994) 105.
- 166. K.-Y. Shih, R.R. Schrock and R. Kempe, J. Am. Chem. Soc., 116 (1994) 8804.
- 167. M. Kol, R.R. Schrock, R. Kempe and W.M. Davis, J. Am. Chem. Soc., 116 (1994) 4382.
- 168. V.V. Strelets and C.J. Pickett, *Electrokhimiya*, 30 (1994) 1023; *Chem. Abstr.*, 121 (1994) 266324u; *Russian J. Electrochem.*, 30 (1994) 926.
- 169. D.L. Hughes, S.K. Ibrahim, C.J. Pickett, G. Querne, A. Laouenan, J. Talarmin, A. Queiros and A. Fonseca, *Polyhedron*, 13 (1994) 3341.
- 170. R.A. Henderson and K.E. Oglieve, J. Chem. Soc., Dalton Trans., (1994) 767.
- 171. H. Seino, Y. Ishii and M. Hidai, J. Am. Chem. Soc., 116 (1994) 7433.
- 172. H. Seino, Y. Ishii and M. Hidai, Organometallics, 13 (1994) 364.
- 173. M. Jiménez-Tenorio, M.C. Puerta, P. Valerga and D.L. Hughes, J. Chem. Soc., Dalton Trans., (1994) 2431.
- 174. M. Minato, S. Kurishima, K. Nagai, M. Yamasaki and T. Ito, Chem. Lett., (1994) 2339.
- 175. H.J. Bullick, P.D. Grebenik, M.L.H. Green, A.K. Hughes, J.B. Leach and P. Mountford, J. Chem. Soc., Dalton Trans., (1994) 3337.
- 176. N. Ueyama, M. Kondo, H. Oku and A. Nakamura, Bull. Chem. Soc. Jpn., 67 (1994) 1840.
- 177. H. Oku, N. Ucyama, M. Kondo and A. Nakamura, Inorg. Chem., 33 (1994) 209.
- 178. S.K. Das, P.K. Chaudhury, D. Biswas and S. Sarkar, J. Am. Chem. Soc., 116 (1994) 9061.
- 179. H. Oku, N. Ueyama, A. Nakamura, Y. Kai and N. Kanehisa, Chem. Lett., (1994) 607.
- 180. L.J. Laughlin, J.M. Gulbis, E.R.T. Tiekink and C.G. Young, Aust. J. Chem., 47 (1994) 471; Chem. Abstr., 120 (1994) 337694g.
- 181. S.K. Dutta, S.B. Kumar, S. Bhattacharyya and M. Chaudhury, J. Chem. Soc., Dalton Trans., (1994) 97.
- 182. T. Yoshida, T. Adachi, N. Yabunouchi, T. Ueda and S. Okamoto, J. Chem. Soc., Chem. Commun., (1994) 151.
- 183. S. Kaizaki and J.I. Legg, Inorg. Chim. Acta, 218 (1994) 179.
- 184. S.-O. Oh and E.-Y. Lyou, J. Korean Chem. Soc., 38 (1994) 808; Chem. Abstr., 122 (1995) 70644z.
- 185. C.J.H. Jacobsen, J. Hyldtoft, S. Larsen and E. Pedersen, Inorg. Chem., 33 (1994) 840.
- 186. J.V. Brencic, I. Leban and B. Modec, Polyhedron, 13 (1994) 3171.
- 187. I. Leban, B. Modec and J.V. Brencic, Acta Crystallogr., 50C (1994) 1546.
- 188. J.V. Brencic, I. Leban and B. Modec, Z. Anorg. Allg. Chem., 620 (1994) 950.
- 189. G.A. Medley and R. Stranger, Inorg. Chem., 33 (1994) 3976.
- 190. I. Leban and P. Segedin, Croat. Chem. Acta, 67 (1994) 327; Chem. Abstr., 122 (1995) 70641w.
- 191. P. Segedin, Acta Chim. Slov., 40 (1993) 331; Chem. Abstr., 121 (1994) 147736v.
- 192. K.A. Hall and J.M. Mayer, Inorg. Chem., 33 (1994) 3289.
- 193. J.L. Deavenport, R.T. Stubbs, G.L. Powell, E.L. Sappenfield and D.F. Mullica, Inorg. Chim. Acta, 215 (1994) 191.
- 194. T.A. Budzichowski and M.H. Chisholm, Polyhedron, 13 (1994) 2035.
- 195. T.A. Budzichowski, M.H. Chisholm, J.C. Huffman and O. Eisenstein, Angew. Chem., Int. Ed. Engl., 33 (1994) 191.
- 196. A. Ford, E. Sinn and S. Woodward, Polyhedron, 13 (1994) 635.

- 197. R.D. Feltham and E. Rajaseelan, Inorg. Chim. Acta, 218 (1994) 195.
- 198. E. Rajaseelan and R.D. Feltham, J. Pa. Acad. Sci., 68 (1994) 77; Chem. Abstr., 122 (1995) 176909e.
- 199. P.K. Baker, M.B. Hursthouse, A.I. Karaulov, A.J. Lavery, K.M. Abdul Malik, D.J. Muldoon and A. Shawcross, J. Chem. Soc., Dalton Trans., (1994) 3493.
- 200. P.K. Baker, S.D. Harris, M.C. Durrant, D.L. Hughes and R.L. Richards, J. Chem. Soc., Dalton Trans., (1994) 1401.
- 201. P.K. Baker and D.J. Sherlock, Polyhedron, 13 (1994) 525.
- P.K. Baker, M. van Kampen, C. Roos and J. Spaeth, Transition Met. Chem., 19 (1994) 165;
 Chem. Abstr., 121 (1994) 25488v.
- 203. C.W. Haigh and P.K. Baker, Polyhedron, 13 (1994) 417.
- 204. P.K. Baker and D. ap Kendrick, J. Organomet. Chem., 466 (1994) 139.
- 205. P.K. Baker and D. ap Kendrick, *Polyhedron*, 13 (1994) 39.
- 206. M. Cano, J.A. Campo, M. Panizo, J. Tornero and N. Menendez, Polyhedron, (1994) 3309.
- M. Cano, M. Panizo, J.A. Campo, J. Tornero and N. Menendez, *Polyhedron*, 13 (1994) 1835.
- 208. G. Barrado, D. Miguel, J.A. Pérez-Martínez, V. Riera and S. Garcia Granda, J. Organomet. Chem., 466 (1994) 147.
- 209. M. Cano, M. Panizo, J.A. Campo, E. Gutierrez-Puebla, M.A. Monge and C. Ruiz-Valero, *Polyhedron*, 13 (1994) 1669.
- 210. J.P. Collman and H.J. Arnold, J. Cluster Sci., 5 (1994) 37; Chem. Abstr., 121 (1994) 18199y.
- 211. J.P. Collman, H.J. Arnold, K.J. Weissman and J.M. Burton, *J. Am. Chem. Soc.*, 116 (1994) 9761.
- 212. B.J. Coe, C.J. Jones, J.A. McCleverty, D. Bloor, P.V. Kolinsky and R.J. Jones, *Polyhedron*, 13 (1994) 2107.
- 213. B.J. Coe, J.-D. Foulon, T.A. Hamor, C.J. Jones, J.A. McCleverty, D. Bloor, G.H. Cross and T.L. Axon, J. Chem. Soc., Dalton Trans., (1994) 3427; correction (1995) 153.
- 214. B.J. Coe, C.J. Jones and J.A. McCleverty, *Polyhedron*, 13 (1994) 2117.
- 215. J.P. Maher, J.A. McCleverty, M.D. Ward and A. Wiodarczyk, J. Chem. Soc., Dalton Trans., (1994) 143.
- 216. A.J. Amoroso, J.P. Maher, J.A. McCleverty and M.D. Ward, J. Chem. Soc., Chem. Commun., (1994) 1273.
- 217. S.M. Kagwanja, C.J. Jones, J.P. Maher and J.A. McCleverty, Polyhedron, 13 (1994) 2615.
- 218. J.A. McCleverty, J.A. Navas Badiola and M.D. Ward, J. Chem. Soc., Dalton Trans., (1994) 2415.
- 219. J. Huang, R.L. Ostrander, A.L. Rheingold, Y. Leung and M.A. Walters, J. Am. Chem. Soc., 116 (1994) 6769.
- 220. M. Cano, J.V. Heras, A. Monge, E. Pinilla, C.J. Jones and J.A. McCleverty, J. Chem. Soc., Dalton Trans., (1994) 1555.
- 221. J.C. Jeffery, S.S. Kurek, J.A. McCleverty, E. Psillakis, R.M. Richardson, M.D. Ward and A. Wlodarczyk, J. Chem. Soc., Dalton Trans., (1994) 2559.
- 222. A.L. Rheingold, B.S. Haggerty and S. Trofimenko, J. Chem. Soc., Chem. Commun., (1994) 1973.
- 223. A.L. Rheingold, R.L. Ostrander, B.S. Haggerty and S. Trofimenko, *Inorg. Chem.*, 33 (1994) 3666.
- 224. J. Böhmer, G. Haselhorst, K. Wieghardt and B. Nuber, *Angew. Chem.*, *Int. Ed. Engl.*, 33 (1994) 1473.
- 225. D.V. Baxter, R.H. Cayton, M.H. Chisholm, J.C. Huffman, E.F. Putilina, S.L. Tagg, J.L. Wesemann, J.W. Zwanziger and F.D. Darrington, J. Am. Chem. Soc., 116 (1994) 4551.
- 226. O. Kriz, A.L. Rheingold, M. Shang and T.P. Fehlner, *Inorg. Chem.*, 33 (1994) 3777.
- 227. M. Handa, M. Mikuriya, R. Nukada, H. Matsumoto and K. Kasuga, *Bull. Chem. Soc. Jpn.*, 67 (1994) 3125.
- 228. K.R. Dunbar, J. Cluster Sci., 5 (1994) 125; Chem. Abstr., 120 (1994) 314082s.

- 229. B.E. Bursten and T.W. Clayton, Jr., J. Cluster Sci., 5 (1994) 157; Chem. Abstr., 121 (1994) 18316i.
- 230. A.G. Comrie, A. McVitie and R.D. Peacock, Polyhedron, 13 (1994) 193.
- 231. M. McCann, E. Mac Giolla Coda and K. Maddock, J. Chem. Soc., Dalton Trans., (1994) 1489.
- 232. E.F. Day, C.A. Crawford, K. Folting, K.R. Dunbar and G. Christou, J. Am. Chem. Soc., 116 (1994) 9339.
- 233. T.-L.C. Hu, I.-J. Chang, D.L. Ward and D.G. Nocera, Inorg. Chem., 33 (1994) 2132.
- 234. W.S. Sheldrick and M. Mintert, Inorg. Chim. Acta, 219 (1994) 23.
- 235. D. Sellmann, H.J. Kremitzl and F. Knoch, *Inorg. Chim. Acta*, 225 (1994) 163.
- 236. R. Abdel-Hamid, A.A. El-Samahy, M.K.M. Rabia, N. Taylor and B.L. Shaw, *Bull. Chem. Soc. Jpn.*, 67 (1994) 321.
- 237. A.W. Ehlers and G. Frenking, J. Am. Chem. Soc., 116 (1994) 1514.
- 238. A.K. Baev, Zh. Obshch. Khim., 64 (1994) 212; Chem. Abstr., 121 (1994) 165035v.
- 239. M. Kurhinen, T. Venäläinen and T.A. Pakkanen, J. Phys. Chem., 98 (1994) 10237.
- 240. E.E. Platero and M.P. Mentruit, *Inorg. Chem.*, 33 (1994) 1506.
- 241. S. Hu and T. Apple, J. Phys. Chem., 98 (1994) 13665.
- 242. V.A. Maksakov and V.A. Ershova, *Koord. Khim.*, 20 (1994) 286; *Chem. Abstr.*, 121 (1994) 309236m.
- 243. C.-Y. Lee and C.-S. Liu, J. Organomet. Chem., 469 (1994) 151.
- 244. B. Schiemenz, B. Antelmann, G. Huttner and L. Zsolnai, Z. Anorg. Allg. Chem., 620 (1994) 1760.
- 245. J.T. Lin, Y.C. Lee, H.M. Kao, T.-Y. Dong and Y.S. Wen, J. Organomet. Chem., 465 (1994) 199.
- T. Chandiran and S. Vancheesan, Proc. Ind. Acad. Sci., Chem. Sci., 106 (1994) 5; Chem. Abstr., 121 (1994) 49107w.
- 247. B. Zhuang, B. Pan and L. Huang, J. Coord. Chem., 30 (1993) 79; Chem. Abstr., 121 (1994) 194232n.
- 248. S. Li, D.F. Mullica, E.L. Sappenfield and F.G.A. Stone, J. Organomet. Chem., 467 (1994) 95.
- 249. D.F. Mullica, E.L. Sappenfield, F.G.A. Stone and S.F. Woollam, *Organometallics*, 13 (1994) 157.
- 250. S.J. Dossett, S. Li, D.F. Mullica, E.L. Sappenfield and F.G.A. Stone, Organometallics, 13 (1994) 822.
- 251. G. Beck, M.F. Lappert and P.B. Hitchcock, J. Organomet. Chem., 468 (1994) 143.
- 252. W.M. Laidlaw and R.G. Denning, Polyhedron, 13 (1994) 1875.
- 253. W.M. Laidlaw and R.G. Denning, Polyhedron, 13 (1994) 2337.
- 254. T. Matsubara, C. Daniel and A. Veillard, Organometallics, 13 (1994) 4905.
- 255. F.E. McDonald and C.C. Schultz, J. Am. Chem. Soc., 116 (1994) 9363.
- 256. I.A. Mour, S. Ozkar and C.G. Kreiter, Z. Naturforsch, Teil B., 49B (1994) 1059.
- 257. I.A. Mour and S. Ozkar, Z. Naturforsch., Teil B, 49B (1994) 717.
- 258. E.S. Dodsworth, A.A. Vlcek and A.B.P. Lever, Inorg. Chem., 33 (1994) 1045.
- 259. K. Shinozaki and Y. Kaizu, Bull. Chem. Soc. Jpn., 67 (1994) 2314.
- 260. S. Bokorny, J.A. Connor and H. Kaspar, J. Organomet. Chem., 471 (1994) 157.
- 261. E.W. Abel, K.G. Orrell, A.G. Osborne, H.M. Pain and V. Sik, J. Chem. Soc., Dalton Trans., (1994) 111.
- 262. J. Granifo, Polyhedron, 13 (1994) 713.
- 263. K.-B. Shiu, S.-T. Lin, C.-C. Chou, S.M. Peng, M.-C. Cheng, S.-L. Wang and F.-L. Liao, J. Organomet. Chem., 469 (1994) 169.
- 264. M. Döring, H. Görls and R. Beckert, Z. Anorg. Allg. Chem., 620 (1994) 551.
- 265. A. Srivastava, A.K. Shrimal and S.C. Srivastava, Polyhedron, 13 (1994) 975.
- 266. B.L. Shaw, M. Thornton-Pett and J.D. Vessey, J. Chem. Soc., Dalton Trans., (1994) 3597.
- 267. E.C. Alyea, G. Ferguson and V.K. Jain, Acta Crystallogr., 50C (1994) 854.

- 268. V. Patinec, J.J. Yaouanc, H. Handel, J.C. Clement and H. des Abbayes, *Inorg. Chim. Acta*, 220 (1994) 347.
- 269. S. Schmidt, G. Lattermann, R. Kleppinger and J.H. Wendorf, Liquid Crystals, 16 (1994) 603
- 270. Y.B. Kang, M. Pabel, A.C. Willis and S.B. Wild, J. Chem. Soc., Chem. Commun., (1994) 475; correction p. 1403.
- 271. T. Seitz, A. Muth, G. Huttner, T. Klein, O. Walter, M. Fritz and L. Zsolnai, J. Organomet. Chem., 469 (1994) 155.
- 272. H.A. Mayer, H. Otto, H. Kühbauch, R. Fawzi and M. Steimann, J. Organomet. Chem., 472 (1994) 347.
- 273. A. Muth, O. Walter, G. Huttner, A. Asam, L. Zsolnai and C. Emmerich, J. Organomet. Chem., 468 (1994) 149.
- 274. J.R. Goerlich and R. Schmutzler, Z. Anorg. Allg. Chem., 620 (1994) 898.
- 275. K.R. Dunbar, J.-S. Sun, S.C. Haefner and J.H. Matonic, Organometallics, 13 (1994) 2713.
- 276. M.J. Aroney, M.S. Davies, T.W. Hambley and R.K. Pierens, J. Chem. Soc., Dalton Trans., (1994) 91.
- 277. M.J. Aroney, I.E. Buys, M.S. Davies and T.W. Hambley, J. Chem. Soc., Dalton Trans., (1994) 2827.
- 278. D.N. Horng, S.-T. Jeng and C.-H. Ueng, J. Chin. Chem. Soc., 41 (1994) 539; Chem. Abstr., 122 (1995) 22470t.
- 279. P. Planinic, H. Meider and D. Matkovic-Calagovic, J. Organomet. Chem., 483 (1994) 205.
- 280. T.C. Blagborough, R. Davis and P. Ivison, J. Organomet. Chem., 467 (1994) 85.
- 281. K.A. Richie, D.K. Bowsher, J. Popinski and G.M. Gray, Polyhedron, 13 (1994) 227.
- 282. W.-T. Wong and W.-K. Wong, Acta Crystallogr., 50C (1994) 1404.
- 283. S.-G. Shyu, J.-Y. Hsu, P.-J. Lin, W.-J. Wu, S.-M. Peng, G.-H. Lee and Y.-S. Wen, *Organometallics*, 13 (1994) 1699.
- 284. C.P. Shao, J.Y. Wang and H.F. Guo, Chin. Chem. Lett., 5 (1994) 717; Chem. Abstr., 122 (1995) 70516j.
- 285. J.T. Mague, Inorg. Chem., 33 (1994) 4261.
- 286. D.L. Lichtenberger and M.E. Jatcko, J. Coord. Chem., 32 (1994) 79; Chem. Abstr., 121 (1994) 220181s.
- 287. M. Watson, S. Woodward, G. Conole, M. Kessler and G. Sykara, *Polyhedron*, 13 (1994) 2455.
- 288. E.C. Alyea, G. Ferguson, J.F. Gallagher and S. Song, Acta Crystallogr., 50C (1994) 1084.
- 289. E.C. Alyea, G. Ferguson and M. Zwikker, Acta Crystallogr., 50C (1994) 676.
- 290. A.L. Rheingold, B.S. Haggerty, A.J. Edwards, C.E. Housecroft, A.D. Hattersley and N. Hinze, *Acta Crystallogr.*, 50C (1994) 1411.
- 291. A. Tekkaya, C. Kayran, S. Ozkar and C.G. Kreiter, Inorg. Chem., 33 (1994) 2439.
- 292. V. Deckert, C. Engert, U. Posset and W. Kiefer, Vibr. Spectrosc., 7 (1994) 49; Chem. Abstr., 121 (1994) 68301w.
- 293. C.H. Ueng and J.L. Hwang, *Inorg. Chim. Acta*, 218 (1994) 9.
- 294. C.H. Ueng and J.L. Hwang, Acta Crystallogr., 50C (1994) 1866.
- 295. V.S. Reddy, K.V. Katti and C.L. Barnes, Organometallics, 13 (1994) 2391.
- 296. G.M. Gray and C.H. Duffey, Organometallics, 13 (1994) 1542.
- 297. J.L. Bookham, F. Conti, H.C.E. McFarlane, W. McFarlane and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., (1994) 1791.
- 298. E.J. Fernandez, M.C. Gimeno, P.G. Jones, A. Laguna, M. Laguna and E. Olmos, J. Chem. Soc., Dalton Trans., (1994) 2891.
- 299. M. Nieger, G. Bruder and R. Appel, Z. Kristallogr., 209 (1994) 842.
- 300. H. Nakazawa, Y. Yamaguchi and K. Miyoshi, J. Organomet. Chem., 465 (1994) 193.
- 301. W.A. Schenk and A. Voβ, J. Organomet. Chem., 467 (1994) 57.
- 302. H. Yang, E.H. Wong, A.L. Rheingold, B.E. Owens-Waltermire and B.S. Haggerty, Organometallics, 13 (1994) 4825.

- 303. X.-L. Luo, G.J. Kubas, J.C. Bryan, C.J. Burns and C.J. Unkefer, J. Am. Chem. Soc., 116 (1994) 10312.
- 304. X.-L. Luo, G.J. Kubas, C.J. Burns and J. Eckert, Inorg. Chem., 33 (1994) 5219.
- 305. R.P.K. Babu and S.S. Krishnamurthy, Proc. Ind. Acad. Sci., Chem. Sci., 106 (1994) 37; Chem. Abstr., 121 (1994) 123867n.
- 306. V.S. Reddy, S.S. Krishnamurthy and M. Nethaji, J. Chem. Soc., Dalton Trans., (1994)
- 307. S.D. Perera, B.L. Shaw and M. Thornton-Pett, J. Chem. Soc., Dalton Trans., (1994) 713.
- 308. M. Alvarez, N. Lugan and R. Mathieu, J. Chem. Soc., Dalton Trans., (1994) 2755.
- 309. J.W. Faller, N. Zhang, K.J. Chase, W.K. Musker, A.R. Amaro and C.M. Semko, J. Organomet. Chem., 468 (1994) 175.
- 310. M.C. Durrant, C. Hauser, D.L. Hughes, M.J. Maguire and R.L. Richards, J. Organomet. Chem., 476 (1994) 219.
- 311. H.J. Plinta, I. Neda and R. Schmutzler, Z. Naturforsch., Teil B, 49B (1994) 100.
- 312. C. Mundt, H.J. Plinta, A. Fischer, P.G. Jones, L. Riesel and R. Schmutzler, *Phosphorus*, Sulfur, Silicon Relat. Elem., 90 (1994) 193; Chem. Abstr., 122 (1995) 95208y.
- 313. A. Fischer, I. Neda, P.G. Jones and R. Schmutzler, Z. Naturforsch., Teil B, 49B (1994)
- 314. V.S. Reddy, K.V. Katti and C.L. Barnes, Chem. Ber., 127 (1994) 979.
- 315. S.A. Katz, V.S. Allured and A.D. Norman, Inorg. Chem., 33 (1994) 1762.
- 316. A. Chandrasekaran, S.S. Krishnamurthy and M. Nethaji, J. Chem. Soc., Dalton Trans., (1994) 63.
- 317. A. Chandrasekaran and S.S. Krishnamurthy, *Indian J. Chem.*, 33A (1994) 391; *Chem. Abstr.*, 121 (1994) 25546n.
- 318. S. Charles, B.W. Eichhorn, A.L. Rheingold and S.G. Bott, J. Am. Chem. Soc., 116 (1994) 8077.
- 319. U. Bolle and W. Tremel, J. Chem. Soc., Chem. Commun., (1994) 217.
- 320. P.-H. Yu, L.R. Huang and B.T. Zhuang, Jiegou Huaxue, 13 (1994) 343; Chem. Abstr., 122 (1995) 121712e.
- 321. P. Yu, L. Huang and B. Zhuang, Acta Crystallogr., 50C (1994) 1191.
- 322. Y.-M. Shi, S.-W. Lu, H.-F. Guo, J.-Q. Shi and Q.-J. Wu, Chin. Sci. Bull., 39 (1994) 263; Chem. Abstr., 122 (1995) 176911z.
- 323. J.A. Campo, M.A. Lobo, M.F. Perpinan and A.E. Sanchez-Pelaez, *Educ. Quim.*, 5 (1994) 106; *Chem. Abstr.*, 121 (1994) 204445a.
- 324. P. Ge, B.S. Haggerty, A.L. Rheingold and C.G. Riordan, J. Am. Chem. Soc., 116 (1994) 8406.
- 325. P.K. Baker, M.C. Durrant, B. Goerdt, S.D. Harris, D.L. Hughes and R.L. Richards, J. Organomet. Chem., 469 (1994) C22.
- 326. R.J. Smith, S.N. Salek, M.J. Went, P.J. Blower and N.J. Barnard, J. Chem. Soc., Dalton Trans., (1994) 3165.
- 327. L.D. Rosenheim and J.C. Huffman, Polyhedron, 13 (1994) 667.
- 328. B.-T. Zhuang, A.-J. Lan, L.-J. He and L.-R. Huang, Chin. J. Chem., 12 (1994) 495; Chem. Abstr., 122 (1995) 176904z.
- 329. D. Miguel, J.A. Pérez-Martínez, V. Riera and S. Garcia-Granda, Organometallics, 13 (1994) 1336.
- 330. E.M. López, D. Miguel, J.A. Pérez-Martínez and V. Riera, J. Organomet. Chem., 467 (1994) 231.
- 331. D. Miguel, J.A. Pérez-Martínez, V. Riera and S. Garcia-Granda, Organometallics, 13 (1994) 4667.
- 332. R.J. Deeth and C.N. Field, J. Chem. Soc., Dalton Trans., (1994) 1943.
- 333. M.A. Máñez, M.J. Fernández-Trujilla and M.G. Basallote, J. Chem. Soc., Dalton Trans., (1994) 1717.
- 334. J.O. Dziegielewski, J.G. Malecki and R. Grzybek, Polyhedron, 13 (1994) 241.

- 335. R.C. Maurya, D.D. Mishra, S. Mukherjee and S.K. Jaiswal, Synth. React. Inorg. Met.-Org. Chem., 24 (1994) 53; Chem. Abstr., 120 (1994) 259832j.
- 336. N.S. Rao, D.D. Mishra, R.C. Maurya and N.N. Rao, Polyhedron, 13 (1994) 2653.
- 337. S.-O. Oh and S.J. Mo, J. Korean Chem. Soc., 38 (1994) 485; Chem. Abstr., 121 (1994) 220146j.
- 338. A.K. Narula, P. Lukose and O.P. Vermani, *Indian J. Chem.*, 33A (1994) 263; *Chem. Abstr.*, 121 (1994) 48981q.
- 339. A. Müller and M.T. Pope, Eds., Polyoxometalates: From Platonic Solids to Anti-Retroviral Activity, Kluwer, Dordrecht, 1994.
- 340. N. Mizuno and M. Misono, J. Mol. Catal., 86 (1994) 319.
- 341. R.J.J. Jansen, H.M. van Veldhuizen, M.A. Schwegler and H. van Bekkum, *Recl. Trav. Chim. Pays-Bas*, 113 (1994) 115.
- 342. A. Müller, J. Mol. Struct., 325 (1994) 13; Chem. Abstr., 121 (1994) 286729h.
- 343. M.T. Pope and A. Müller, Mol. Eng., 3 (1993) 1.
- 344. O. Del Gado, A. Dress, A. Müller and M.T. Pope, Mol. Eng., 3 (1993) 9.
- 345. B. Krebs abd R. Klein, Mol. Eng., 3 (1993) 43.
- 346. P. Gouzerh, Y. Jeannin, A. Proust, F. Robert and S.G. Roh, *Mol. Eng.*, 3 (1993) 79.
- 347. J. Zubieta, Mol. Eng., 3 (1993) 93.
- 348. L. Xu, H. Liu, D. Yan, J. Huang and Q. Zhang, J. Chem. Soc., Dalton Trans., (1994) 2099.
- 349. D. Yan, J. Huang, L. Xu, H. Liu and Q. Zhang, Jiegou Huaxue, 12 (1993) 370; Chem. Abstr., 121 (1994) 25460e.
- 350. H. Liu, L. Xu, J.-S. Huang and Q. Zhang, Jiegou Huaxue, 13 (1994) 170; Chem. Abstr., 121 (1994) 220097u.
- 351. H. Liu, L. Xu, J. Huang, D. Yan and Q. Zhang, Jiegou Huaxue, 13 (1994) 52; Chem. Abstr., 121 (1994) 25418x.
- 352. Z.L. Yin, X.H. Li, Q.S. Zhao, S.Y. Chen, G.R. Liu and S.Q. Wang, *Thermochim. Acta*, 244 (1994) 283; *Chem. Abstr.*, 121 (1994) 314555u.
- 353. M.P. Lowe, J.C. Lockhart, W. Clegg and K.A. Fraser, Angew. Chem., Int. Ed. Engl., 33 (1994) 451.
- 354. A. Proust, R. Thouvenot, M. Chaussade, F. Robert and P. Gouzerh, *Inorg. Chim. Acta*, 224 (1994) 81.
- 355. J.B. Strong, R.L. Ostrander, A.L. Rheingold and E.A. Maatta, *J. Am. Chem. Soc.*, 116 (1994) 3601.
- 356. H.-L. Li, X.-Z. You, X.-X. Xu and J.S. Huang, Jiegou Huaxue, 13 (1994) 109; Chem. Abstr., 121 (1994) 168905q.
- 357. S. Niu, H. Zhang, G. Yang, F. Nie and S. Li, Chem. Res. Chin. Univ., 10 (1994) 36; Chem. Abstr., 121 (1994) 291278q.
- 358. S. Triki, L. Quahab and J.M. Fabre, Acta Crystallogr., 50C (1994) 219; correction p. 834.
- 359. S. Kolaric, M. Gelo, M. Sankovic and V. Sunjic, J. Mol. Catal., 89 (1994) 247.
- 360. M. Isaac, T. Pradip and V.U. Nayar, J. Solid State Chem., 112 (1994) 132.
- 361. Y. Laligant, Eur. J. Solid State Chem., 31 (1994) 211; Chem. Abstr., 121 (1994) 123950j.
- 362. P. Roman, A. San José, A. Luque and J.M. Gutierrez-Zorrilla, Acta Crystallogr., 50C (1994) 1031.
- 363. U. Ciesla, D. Demuth, R. Leon, P. Petroff, G. Stucky, K. Unger and F. Schüth, J. Chem. Soc., Chem. Commun., (1994) 1387.
- 364. I. Andersson, J.J. Hastings, O.W. Howarth and L. Petterssen, J. Chem. Soc., Dalton Trans., (1994) 1061.
- 365. M. McCann, K. Maddock, C. Cardin, M. Convery and V. Quillet, *Polyhedron*, 13 (1994) 835.
- 366. M. McCann and K. Maddock, *Polyhedron*, 13 (1994) 3153.
- 367. H. Zhang, S. Niu, G. Yang, F. Nie and S. Li, *Transition Met Chem.*, 19 (1994) 498.
- 368. J.M. Gutierrez-Zorrilla, T. Yamase and M. Sugeta, Acta Crystallogr., 50C (1994) 196
- 369. X.-X. Xu, X.-Z. You and X. Wang, Polyhedron, 13 (1994) 1011.
- 370. S.A. Jansen, D.J. Singh and S.H. Wang, Chem. Mater., 6 (1994) 146.

- 371. X. Jin, K. Tang, H. Ni and Y. Tang, Polyhedron, 13 (1994) 2439.
- 372. R. Xi, B. Wang, K. Isobe, T. Nishioka, K. Toriumi and Y. Ozawa, Inorg. Chem., 33 (1994) 833.
- 373. R. Xi, B. Wang, Y. Ozawa, M. Abe and K. Isobe, Chem. Lett., (1994) 323.
- 374. R. Xi, B. Wang, M. Abe, Y. Ozawa and K. Isobe, Chem. Lett., (1994) 1177.
- 375. H. Akashi, J. Chen, T. Sakuraba and A. Yagasaki, Polyhedron, 13 (1994) 1091.
- 376. M.J. Calhorda, J. Organomet. Chem., 475 (1994) 149.
- 377. Y. Ishii, H. Tanaka and Y. Nishiyama, Chem. Lett., (1994) 1.
- 378. F.P. Ballistreri, G.A. Tomaselli, R.M. Toscano, V. Conte and F. Di Furia, J. Mol. Catal., 89 (1994) 295.
- 379. Z. Bixian, H. Jinshun and J. Lu, Jiegou Huaxue, 12 (1993) 175; Chem. Abstr., 121 (1994) 25382.
- 380. S.-L. Wang, K.-F. Hsu and Y.-P. Nieh, J. Chem. Soc., Dalton Trans., (1994) 1681.
- 381. M. Fournier, A. Aouissi and C. Rocchiccioli-Deltcheff, J. Chem. Soc., Chem. Commun., (1994) 307.
- 382. V.M. Bondareva, T.V. Andrushkevich, R.I. Maksimovskaya, L.M. Plyasova, A.V. Ziborov, G.S. Litvan and L.G. Detusheva, *Kinet. Catal.*, 35 (1994) 129; *Chem. Abstr.*, 120 (1994) 288685u.
- 383. M. Fournier, C. Rocchiccioli-Deltcheff and L.P. Kazansky, Chem. Phys. Lett., 223 (1994) 297.
- 384. A. Proust, M. Fournier, R. Thouvenot and P. Gouzerh, Inorg. Chim. Acta, 215 (1994) 61.
- 385. I. Kawafune and G. Matsubayashi, Bull. Chem. Soc. Jpn., 67 (1994) 694.
- 386. H. Qi, X. Yang, Q. Yan and X. Fu, Huaxue Xuebao, 52 (1994) 155; Chem. Abstr., 120 (1994) 288681q.
- 387. H. Zhang, G. Yang, X. Qi, S. Li and Z. Li, Chem. Res. Chin. Univ., 9 (1993) 351; Chem. Abstr., 121 (1994) 194154p.
- 388. D. Attanasio and F. Bachechi, Adv. Mater. (Weinheim), 6 (1994) 145; Chem. Abstr., 121 (1994) 291216t.
- 389. P. Le Maguerès, L. Ouahab, S. Golhen, D. Grandjean, O. Peña, J.-C. Jegaden, C.J. Gomez-Garcia and P. Delhaès, *Inorg. Chem.*, 33 (1994) 5180.
- 390. K. Maeda, S. Himeno, T. Osakai, A. Saito and T. Hori, J. Electroanal. Chem., 364 (1994) 149; Chem. Abstr., 120 (1994) 333568w.
- 391. V.P. Shilov, L.N. Astafurova and N.N. Krot, Radiokhimiya, 36 (1994) 241; Chem. Abstr., 122 (1995) 150179s.
- 392. H. Katano, T. Osakai, S. Himeno and A. Saito, Chem. Lett., (1994) 1471.
- 393. Q. Wu, S. Xu and Y. Song, Chin. Chem. Lett., 5 (1994) 59; Chem. Abstr., 121 (1994) 72339g,
- 394. Q. Wu, S. Xu, Y. Song and S. Wang, Rare Met. (Beijing), 13 (1994) 58; Chem. Abstr., 121 (1994) 220005n,
- 395. Q. Wu and Y. Song, Rare Met. (Beijing), 13 (1994) 97; Chem. Abstr., 122 (1995) 22430e.
- 396. A. Saito, Inorg. Chim. Acta, 217 (1994) 93.
- 397. C.I. Cabello, I.L. Botto and H.J. Thomas, *Thermochim. Acta*, 232 (1994) 183; *Chem. Abstr.*, 120 (1994) 288679v.
- 398. T. Hernandez-Perez, S. Holquin Quinones and I. Gonzalez, *Proc. Electrochem. Soc.*, 94-31 (1994) 339; *Chem. Abstr.*, 122 (1995) 276413g.
- 399. I.L. Botto, A.C. Garcia and H.J. Thomas, Lat. Am. Appl. Res., 23 (1993) 113; Chem. Abstr., 121 (1994) 239193u.
- 400. I.L. Botto, C.I. Cabello, G. Minelli and M. Ochiuzzi, *Mater. Chem. Phys.*, 39 (1994) 21; *Chem. Abstr.*, 122 (1995) 41229n.
- 401. U. Lee and Y. Sasaki, Bull. Korean Chem. Soc., 15 (1994) 37; Chem. Abstr., 120 (1994) 259881z.
- 402. U. Lee, Acta Crystallogr., 50C (1994) 1657.
- 403. P. Porta, G. Minelli, G. Moretti, I. Pettiti, L.I. Botto and H.J. Thomas, J. Mater. Chem., 4 (1994) 541; Chem. Abstr., 121 (1994) 49039a.

- 404. M.S. Freund and N.S. Lewis, Inorg. Chem., 33 (1994) 1638.
- 405. L. Pettersson, I. Andersson, A. Selling and J.H. Grate, Inorg. Chem., 33 (1994) 982.
- 406. R.D. Gall, M. Faraj and C.L. Hill, Inorg. Chem., 33 (1994) 5015.
- 407. K. Bruckman, M. Che, J. Haber and J.M. Tatibouet, Catal. Lett., 25 (1994) 3.
- 408. T. Bergier, K. Bruckman and J. Haber, Recl. Trav. Chim. Pays-Bas, 113 (1994) 475.
- 409. B. Kamenar, M. Cindric and N. Strukan, Polyhedron, 13 (1994) 2271.
- 410. S. Fujibayashi, K. Nakayama, Y. Nishiyama and Y. Ishii, Chem. Lett., (1994) 1345.
- 411. S.K. Roy, R. Jaiswal and K.C. Dey, J. Indian Chem. Soc., 70 (1993) 705; Chem. Abstr., 122 (1995) 44840r.
- 412. E. Wang, X. Liu, Z.-P. Wang, L. Xu and L.J. Gao, Gaodeng Xuexiao Huaxue Xuebao, 15 (1994) 1285.
- 413. D. Qin, G. Wang and Y. Wu, Chem. Res. Chin. Univ., 10 (1994) 313; Chem. Abstr., 122 (1995) 280561w.
- 414. A. Müller, E. Krickemeyer, S. Dillinger, H. Bögge and A. Stammler, J. Chem. Soc., Chem. Commun., (1994) 2539.
- 415. A. Müller, E. Krickemeyer, S. Dillinger, H. Bögge, W. Plass, A. Proust, L. Dloczik, C. Menke, J. Meyer and R. Rohlfing, Z. Anorg, Allg. Chem., 620 (1994) 599.
- 416. A. Müller, W. Plass, E. Krickemeyer, S. Dillinger, H. Bögge, A. Armatage, A. Proust, C. Beugholt and U. Bergmann, *Angew. Chem.*, *Int. Ed. Engl.*, 33 (1994) 849.
- 417. A. Müller, W. Plass, E. Krickemeyer, S. Dillinger, H. Bögge, A. Armatage, C. Beugholt and U. Bergmann, *Monatsh. Chem.*, 125 (1994) 525.
- 418. U. Kortz and M.T. Pope, Inorg. Chem., 33 (1994) 5643.
- 419. W. Preetz, D. Bublitz, H.G. von Schnering and J. Saβmannshausen, Z. Anorg. Allg. Chem., 620 (1994) 234.
- 420. M.A. White, M.R. Pressprich and P. Coppens, Acta Crystallogr., 50C (1994) 1087.
- 421. P. Brückner, G. Peters and W. Preetz, Z. Anorg. Allg. Chem., 620 (1994) 1669.
- 422. M. Ebihara, T. Kawamura, K. Isobe and K. Saito, Bull. Chem. Soc. Jpn., 67 (1994) 3119.
- 423. S.J. Hilsenbeck, V.G. Young, Jr. and R.E. McCarley, Inorg. Chem., 33 (1994) 1822.
- 424. W. Cen, F.M. MacDonnell, M.J. Scott and R.H. Holm, *Inorg. Chem.*, 33 (1994) 5809.
- 425. J.X. Lu and Z.D. Chen, Int. Rev. Phys. Chem., 13 (1994) 85.
- 426. J. Li, C.-W. Liu and J.X. Lu, Polyhedron, 13 (1994) 1841.
- 427. H. Diller, H. Keck, W. Kuchen and H. Wunderlich, Inorg, Chim. Acta, 216 (1994) 177.
- 428. H. Diller, H. Keck, H. Wunderlich and W. Kuchen, Z. Anorg. Allg. Chem., 620 (1994) 1422.
- 429. J.Q. Huang, S.F. Lu and Q.J. Wu, *Huaxue Xuebao*, 52 (1994) 474; *Chem. Abstr.*, 121 (1994) 123939n.
- 430. J. Mizutani, H. Imoto and T. Saito, Chem. Lett., (1994) 2117.
- 431. V.P. Fedin, A. Müller, K. Filipek, R. Rohlfing, H. Bögge, A.V. Vorovets and J.O. Dziegielewski, *Inorg. Chim. Acta*, 223 (1994) 5.
- 432. V.P. Fedin, G.J. Lamprecht and A.G. Sykes, J. Chem. Soc., Chem. Commun., (1994) 2685.
- 433. M.-F. Wang, G.-C. Guo, J.-S. Huang, H.H. Zhuang, Q. Zhang and J.X. Lu, Jiegou Huaxue, 13 (1994) 221; Chem. Abstr., 121 (1994) 220100q.
- 434. S.-F. Lu, Q.-J. Wu, H.-B. Chen, R.-M. Yu and J.-Q. Huang, *Jiegou Huaxue*, 13 (1994) 389; Chem. Abstr., 122 (1995) 95147c.
- 435. C.C. Raymond, P.K. Dorhout and S.M. Miller, Inorg. Chem., 33 (1994) 2703.
- 436. J. Lang and X. Lin, J. Solid State Chem., 108 (1994) 118; Chem. Abstr., 120 (1994) 207184e.
- 437. H. Hou, J. Lang, J. Li and X. Lin, Wuji Huaxue Xuebao, 10 (1994) 218; Chem. Abstr., 121 (1994) 314251s.
- 438. X. Wu, P. Chen, S. Du, N. Zhu and J. Lu, J. Cluster Sci., 5 (1994) 265; Chem. Abstr., 121 (1994) 243952h.
- 439. J.-Q. Huang and J.-L. Huang, Jiegou Huaxue, 13 (1994) 403; Chem. Abstr., 122 (1995) 149939h.

- 440. J. Lang, X. Xin and K. Yu, J. Coord. Chem., 33 (1994) 99; Chem. Abstr., 122 (1995) 22477a.
- 441. H. Hou, X. Xin, J. Liu, M. Chen and S. Shu, J. Chem. Soc., Dalton Trans., (1994) 3211.
- 442. Q. Chen, X. Huang, S. Lu and J. Huang, Jiegou Huaxue, 12 (1993) 391.
- 443. J.P. Lang, G.Q. Bian, M.Q. Chen and X.Q. Xin, Chin. Chem. Lett., 5 (1994) 343; Chem. Abstr., 121 (1994) 123944k.
- 444. V. Lakshmanan, K.S. Nagaraja and M.R. Udupa, *Indian J. Chem.*, 33A (1994) 772; *Chem. Abstr.*, 121 (1994) 220120w.
- 445. S. Shi, W. Ji, S.H. Tang, J.P. Lang and X.Q. Xin, J. Am. Chem. Soc., 116 (1994) 3615.
- 446. J. Lang, X. Xin, J. Cai and B. Kang, Chin. J. Chem., 11 (1993) 418; Chem. Abstr., 121 (1994) 98316x.
- 447. S. Du, X. Wu and J. Lu, Polyhedron, 13 (1994) 841.
- 448. S. Du and X. Wu, Acta. Crystallogr., 50C (1994) 700.
- 449. H.-B. Chen, S.-F. Lu, J.-Q. Huang, Q.-J. Wu and X.-Y. Huang, *Huaxue Xuebao*, 52 (1994) 1088; *Chem. Abstr.*, 122 (1995) 121781b.
- 450. K.D. Demadis and D. Coucouvanis, Inorg. Chem., 33 (1994) 4195.
- 451. K.D. Demadis, S.-J. Chen and D. Coucouvanis, *Polyhedron*, 13 (1994) 3147.
- 452. Q.-T. Liu, B.-S. Kang, C.-N. Chen, Y. Yang, X.-T. Chen and J.-X. Lu, *Jiegou Huaxue*, 13 (1994) 190.
- 453. T. Murata, Y. Mizobe, H. Gao, Y. Ishii, T. Wakabayashi, F. Nakano, T. Tanase, S. Yano, M. Hidai, J. Echizen, H. Nanikawa and S. Motomura, J. Am. Chem. Soc., 116 (1994) 3389.
- 454. M. Nasreldin, C.A. Routledge and A.G. Sykes, J. Chem. Soc., Dalton Trans., (1994) 2809.
- 455. M. Nasreldin, Y.-J. Li, F.E. Mabbs and A.G. Sykes, *Inorg. Chem.*, 33 (1994) 4283.
- 456. G. Sakane, Y.G. Yao and T. Shibahara, Inorg. Chim. Acta, 216 (1994) 13.
- 457. C.A. Routledge, M. Humanes, Y.-J. Li and A.G. Sykes, J. Chem. Soc., Dalton Trans., (1994) 1275; correction p. 2023.
- 458. P.W. Dimmock, D.M. Saysell and A.G. Sykes, Inorg. Chim. Acta, 225 (1994) 157.
- 459. M.C. Ghosh and E.S. Gould, Inorg. Chim. Acta, 225 (1994) 297.
- 460. T. Shibahara, M. Yamasaki, T. Watase and A. Ichimura, Inorg. Chem., 33 (1994) 292.